【题目】如图,AB是⊙O的弦,半径OE⊥AB,P为AB的延长线上一点,PC与⊙O相切于点C,CE与AB交于点F.
(1)求证:PC=PF;
(2)连接OB,BC,若OB∥PC,BC=3,tanP=,求FB的长.
【答案】(1)证明见解析;(2)FB=2.
【解析】
(1)连接OC,根据切线的性质以及OE⊥AB,可知∠E+∠EFA=∠OCE+∠FCP=90°,从而可得∠EFA=∠FCP,继而可推得∠CFP=∠FCP,再根据等角对等边即可证得;
(2)过点B作BG⊥PC于点G,由OB∥PC,OB=OC,BC=3,从而求得OB=3,继而证得四边形OBGC是正方形,从而有OB=CG=BG=3,从而有,求得PG=4,再利用勾股定理可求得PB长,继而可求出FB长.
(1)连接OC,
∵PC是⊙O的切线,
∴∠OCP=90°,
∵OE=OC,
∴∠E=∠OCE,
∵OE⊥AB,
∴∠E+∠EFA=∠OCE+∠FCP=90°,
∴∠EFA=∠FCP,
∵∠EFA=∠CFP,
∴∠CFP=∠FCP,
∴PC=PF;
(2)过点B作BG⊥PC于点G,
∵OB∥PC,
∴∠COB=90°,
∵OB=OC,BC=3,
∴OB=3,
∵BG⊥PC,
∴四边形OBGC是正方形,
∴OB=CG=BG=3,
∵tanP=,
∴,
∴PG=4,
∴由勾股定理可知:PB=5,
∵PF=PC=7,
∴FB=PF﹣PB=7﹣5=2.
科目:初中数学 来源: 题型:
【题目】(1)如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图的名称;
视图 视图
(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.
(1)求反比例函数的解析式;
(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin 53°≈,cos 53°≈,tan 53°≈,≈1.41)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形AOBC的顶点O在原点,边AO,BO分别在x轴和y轴上,点C坐标为(4,4),点D是BO的中点,点P是边OA上的一个动点,连接PD,以P为圆心,PD为半径作圆,设点P横坐标为t,当⊙P与正方形AOBC的边相切时,t的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知公路l上A、B两点之间的距离为50m,小明要测量点C与河对岸边公路l的距离,测得∠ACB=∠CAB=30°.点C到公路l的距离为( )
A. 25m B. m C. 25m D. (25+25)m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.
(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;
(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为216m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是17m和8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com