精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的弦,半径OEABPAB的延长线上一点,PC⊙O相切于点CCEAB交于点F

(1)求证:PCPF

(2)连接OBBC,若OBPCBC3tanP,求FB的长.

【答案】(1)证明见解析;(2)FB2

【解析】

1)连接OC,根据切线的性质以及OEAB,可知∠E+EFA=∠OCE+FCP90°,从而可得∠EFA=∠FCP,继而可推得∠CFP=∠FCP,再根据等角对等边即可证得;

2)过点BBGPC于点G,由OBPCOBOCBC3,从而求得OB3,继而证得四边形OBGC是正方形,从而有OBCGBG3,从而有,求得PG4,再利用勾股定理可求得PB长,继而可求出FB.

(1)连接OC

PC是⊙O的切线,

∴∠OCP90°

OEOC

∴∠E=∠OCE

OEAB

∴∠E+EFA=∠OCE+FCP90°

∴∠EFA=∠FCP

∵∠EFA=∠CFP

∴∠CFP=∠FCP

PCPF

(2)过点BBGPC于点G

OBPC

∴∠COB90°

OBOCBC3

OB3

BGPC

∴四边形OBGC是正方形,

OBCGBG3

tanP

PG4

∴由勾股定理可知:PB5

PFPC7

FBPFPB752

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图的名称;

             视图       视图

(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=

(1)求反比例函数的解析式;

(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,我国两艘海监船AB在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin 53°≈cos 53°≈tan 53°≈≈1.41)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形AOBC的顶点O在原点,边AOBO分别在x轴和y轴上,点C坐标为(44),点DBO的中点,点P是边OA上的一个动点,连接PD,以P为圆心,PD为半径作圆,设点P横坐标为t,当⊙P与正方形AOBC的边相切时,t的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知公路lAB两点之间的距离为50m,小明要测量点C与河对岸边公路l的距离,测得∠ACB=∠CAB30°.点C到公路l的距离为(  )

A. 25m B. m C. 25m D. 25+25m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ACB90°D是边AB的中点,P是边AC上一动点,BPCD相交于点E

1)如果BC6AC8,且PAC的中点,求线段BE的长;

2)联结PD,如果PDAB,且CE2ED3,求cosA的值;

3)联结PD,如果BP22CD2,且CE2ED3,求线段PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推进我市生态文明建设,某校在美化校园活动中,设计小组想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围ABBC两边),设ABxm

(1)若花园的面积为216m2,求x的值;

(2)若在P处有一棵树与墙CDAD的距离分别是17m8m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个批发商销售成本为20/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:

售价x(元/千克)


50

60

70

80


销售量y(千克)


100

90

80

70


1)求yx的函数关系式;

2)该批发商若想获得4000元的利润,应将售价定为多少元?

3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

查看答案和解析>>

同步练习册答案