【题目】某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
【答案】(1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;
(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.
依题意,得解得
答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.
(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.
依题意,得200a+170(30-a)≤5400,
解得a≤10.
答:A种型号的电风扇最多能采购10台.
(3)依题意,有(250-200)a+(210-170)(30-a)=1400,
解得a=20.
∵a≤10,
∴在(2)的条件下超市不能实现利润为1400元的目标.
科目:初中数学 来源: 题型:
【题目】某蔬菜公司收购蔬菜260吨,准备加工后上市销售.该公司的加工能力是:每天精加工8吨或粗加工20吨.现计划在22天内完成加工任务,且尽可能多的精加工,该公司应安排几天精加工,几天粗加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润是1500元,精加工后的利润为3000元,那么该公司出售这些加工后的蔬菜共可获利多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠ABC与∠ACB的平分线交于点O,根据下列条件,求出∠BOC的度数.
(1)已知∠ABC+∠ACB=100°,则∠BOC= .
(2)已知∠A=90°,求∠BOC的度数.
(3)从上述计算中,你能发现∠BOC与∠A的关系吗?请直接写出∠B0C与∠A的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).
(1)求三角形ABC的面积;
(2)如果三角形ABC的三个顶点的纵坐标不变,横坐标增加3个单位长度,得到三角形A1B1C1,试在图中画出三角形A1B1C1,并写出点A1,B1,C1的坐标;
(3)(2)中三角形A1B1C1与三角形ABC的大小、形状有什么关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k≠0)中k的值的变化情况是( )
A.一直增大
B.一直减小
C.先增大后减小
D.先减小后增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.
(1)若BD⊥AC,CF⊥AB,若BE=4,CE=2,求CD:BF;
(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,猜想∠BEC与∠A的数量关系;并说明理由.
(3)在(2)的条件下,若∠A=60°,试说明:BC=BF+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在书写艺术字时,常常运用画“平行线段”这种基本作图方法,此图是在书写字“M”:
(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;
(2)EF与A′B′有何位置关系?CC′与DH有何位置关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=110°,∠BAC=20°,则∠E的度数为( )
A.60°
B.55°
C.50°
D.45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.
求证:四边形ADCF是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com