精英家教网 > 初中数学 > 题目详情

【题目】某电器超市销售每台进价分别为200,170元的A,B两种型号的电风扇表中是近两周的销售情况:

销售时段

销售数量

销售收入

A种型号

B种型号

第一周

3

5

1800

第二周

4

10

3100

(进价、售价均保持不变利润=销售收入-进货成本)

(1)A,B两种型号的电风扇的销售单价.

(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30A种型号的电风扇最多能采购多少台?

(3)(2)的条件下超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出相应的采购方案;若不能请说明理由.

【答案】(1) A,B两种型号电风扇的销售单价分别为250/台、210/台;(2) A种型号的电风扇最多能采购10台;(3) (2)的条件下超市不能实现利润为1400元的目标.

【解析】

(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3A型号5B型号的电扇收入1800元,4A型号10B型号的电扇收入3100元,列方程组求解;

(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;

(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.

(1)A,B两种型号电风扇的销售单价分别为x/台、y/台.

依题意,得解得

答:A,B两种型号电风扇的销售单价分别为250/台、210/台.

(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.

依题意,得200a+170(30-a)≤5400,

解得a≤10.

答:A种型号的电风扇最多能采购10台.

(3)依题意,有(250-200)a+(210-170)(30-a)=1400,

解得a=20.

a≤10,

∴在(2)的条件下超市不能实现利润为1400元的目标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某蔬菜公司收购蔬菜260吨,准备加工后上市销售.该公司的加工能力是:每天精加工8吨或粗加工20吨.现计划在22天内完成加工任务,且尽可能多的精加工,该公司应安排几天精加工,几天粗加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润是1500元,精加工后的利润为3000元,那么该公司出售这些加工后的蔬菜共可获利多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABC中ABC与ACB的平分线交于点O根据下列条件求出BOC的度数

1已知ABC+ACB=100°BOC=

2已知A=90°BOC的度数

3从上述计算中你能发现BOC与A的关系吗?请直接写出B0C与A的关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).

(1)求三角形ABC的面积;

(2)如果三角形ABC的三个顶点的纵坐标不变,横坐标增加3个单位长度,得到三角形A1B1C1,试在图中画出三角形A1B1C1,并写出点A1,B1,C1的坐标;

(3)(2)中三角形A1B1C1与三角形ABC的大小、形状有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y= (k≠0)中k的值的变化情况是(
A.一直增大
B.一直减小
C.先增大后减小
D.先减小后增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.

(1)BD⊥AC,CF⊥AB,若BE=4,CE=2,求CD:BF;

(2)BD平分∠ABC,CF平分∠ACB,如图2所示,猜想∠BEC∠A的数量关系;并说明理由.

(3)在(2)的条件下,若∠A=60°,试说明:BC=BF+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在书写艺术字时,常常运用画平行线段这种基本作图方法,此图是在书写字“M”:

(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;

(2)EFA′B′有何位置关系?CC′DH有何位置关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=110°,∠BAC=20°,则∠E的度数为(
A.60°
B.55°
C.50°
D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,B=90°,点EAC的中点,AC=2ABBAC的平分线ADBC于点D,作AFBC,连接DE并延长交AF于点F,连接FC.

求证:四边形ADCF是菱形.

查看答案和解析>>

同步练习册答案