精英家教网 > 初中数学 > 题目详情

如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,

(1)三角尺旋转了______度.
(2)连结CD,△CBD是______三角形.
(3)∠BDC的度数为______度.

解:(1)∵△ABC旋转后AB与BE重合,∠ABC=30°,
∴∠ABE=180°-30°=150°,
∴三角尺旋转了150°.

(2)∵△EBD由△ABC旋转而成,
∴△ABC≌△EBD,
∴BC=BD,△CBD是等腰三角形.

(3)∵△ABC≌△EBD,
∴∠EBD=∠ABC=30°,
∴∠DBC=180-30°=150°,
∵△CBD是等腰三角形,
∴∠BDC===15°.
故答案为:150;等腰;15.
分析:(1)根据两角互补的性质求出∠ABE的度数即可;
(2)根据图形旋转不变性的性质得出△ABC≌△EBD,故可得出BC=BD,由此即可得出结论;
(3)根据图形选旋转不变性的性质求出∠EBD的度数,再由等腰三角形的性质即可得出∠BDC的度数.
点评:本题考查的是旋转的性质,熟知图形旋转不变性的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为
 
度.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,精英家教网使得点A与CB的延长线上的点E重合.
(1)三角尺旋转了多少度
 
度;
(2)连接CD,试判断△CBD的形状;
 

(3)求∠BDC的度数.
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

33、如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合,已知BC=6.
(1)三角尺旋转了多少度?连接CD,试判断△BCD的形状;
(2)求AD的长;
(3)连接CE,试猜想线段AC与CE的大小关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合.
(1)三角尺旋转了多少度?
(2)连接CD,试判断△ACD的形状,对结论加以证明;
(3)连接CE,试猜想线段AC与CE的大小关系,并予以证明,求出CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合,已知BC=8.
(1)三角尺旋转了多少度?连结CD,试判断△BCD的形状;
(2)求AD的长;
(3)边结CE,试猜想线段AC与CE的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案