【题目】已知的内切圆⊙O与AB、BC、AC分别相切于D、E、F,若,如图1.
(1)判断的形状,并证明你的结论;
(2)连接AE,若,求AE的长.
【答案】(1)为等腰三角形,见解析;(2)
【解析】
(1)根据圆心角和弧的关系、切线的性质和四边形的内角和易证得:,,,进一步即可进行判断;
(2)先根据切线长定理和(1)题的结论得出CE=BE,再由等腰三角形的性质可得AE⊥BC,然后由OE⊥BC说明A、O、E三点共线,再根据勾股定理即可求出结果.
解:(1)为等腰三角形.
证明:的内切圆⊙O与AB、BC、AC分别相切于D、E、F,
,
四边形内角和是,,,
∵,,
,∴,
为等腰三角形;
(2)∵的内切圆⊙O与AB、BC、AC分别相切于D、E、F,
∴AF=AD,CE=CF,BD=BE,
∵AC=AB,∴CF=BD,∴CE=BE,
连接AE,如图,∴AE⊥BC,
又∵OE⊥BC,
∴AE过圆心O,
∵,
∴FC=CE=2,AC=6,
在直角△ACE中,由勾股定理得.
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣mx﹣3x+m﹣4=0(m为常数)
(1)求证:方程有两个不相等的实数根.
(2)设x1,x2是方程的两个实数根,且x1+x2=4,请求出方程的这两个实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,水库大坝的横截面是梯形,坝顶宽5米,CD的长为20米,斜坡AB的坡度i=1:2.5(i为坡比即BE:AE),斜坡CD的坡度i=1:2(i为坡比即CF:FD),求坝底宽AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=6,BC=8,点D是BC边上的一个动点,点E在AC边上,∠ADE=∠B.设BD的长为x,CE的长为y.
(1)当D为BC的中点时,求CE的长;
(2)求y关于x的函数关系式,并写出x的取值范围;
(3)如果△ADE为等腰三角形,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为更好地践行社会主义核心价值观,让同学们珍惜粮食,学会感恩.校学生会积极倡导“光盘行动”,某天午餐后学生会干部随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成如图所示的不完整的统计图.
(1)这次被调查的同学共有______名.
(2)补全条形统计图.
(3)计算在扇形统计图中剩一半饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供40人用餐.据此估算,全校2000名学生一餐浪费的食物可供多少人食用一餐?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节即将来临,某企业接到一批礼品生产任务,约定这批礼品的出厂价为每件6元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人小王第x天生产的礼品数量为y件,y与x满足如下关系:y=.
(1)小王第几天生产的礼品数量为390件?
(2)如图,设第x天生产的每件礼品的成本是z元,z与x之间的关系可用图中的函数图象来刻画.若小王第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC关于原点对称的△A1B1C1;并写出点A1,B1,C1的坐标.
(2)请画出△ABC绕O顺时针旋转90°后的△A2B2C2,并写出点A2,B2,C2的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com