精英家教网 > 初中数学 > 题目详情

【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.

【答案】
(1)∠A+∠C=90°;
(2)解:如图2,过点B作BG∥DM,

∵BD⊥AM,

∴DB⊥BG,即∠ABD+∠ABG=90°,

又∵AB⊥BC,

∴∠CBG+∠ABG=90°,

∴∠ABD=∠CBG,

∵AM∥CN,

∴∠C=∠CBG,

∴∠ABD=∠C;


(3)解:如图3,过点B作BG∥DM,

∵BF平分∠DBC,BE平分∠ABD,

∴∠DBF=∠CBF,∠DBE=∠ABE,

由(2)可得∠ABD=∠CBG,

∴∠ABF=∠GBF,

设∠DBE=α,∠ABF=β,则

∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,

∴∠AFC=3α+β,

∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,

∴∠FCB=∠AFC=3α+β,

△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得

(2α+β)+3α+(3α+β)=180°,①

由AB⊥BC,可得

β+β+2α=90°,②

由①②联立方程组,解得α=15°,

∴∠ABE=15°,

∴∠EBC=∠ABE+∠ABC=15°+90°=105°.


【解析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
【考点精析】解答此题的关键在于理解余角和补角的特征的相关知识,掌握互余、互补是指两个角的数量关系,与两个角的位置无关,以及对平行线的判定与性质的理解,了解由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克,且10≤x≤18)之间的函数关系如图所示:

(1)求y(千克)与销售价z的函数关系式;

(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将二次三项式x2+4x+5化成(x+p)2+q的形式应为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:

西瓜种类

A

B

C

每辆汽车运载量(吨)

4

5

6

每吨西瓜获利(百元)

16

10

12


(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;
(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AGF=∠ABC,∠1+∠2=180°.
(1)试判断BF与DE的位置关系,并说明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),BPE=ACB,PE交BO于点E,过点B作BFPE,垂足为F,交AC于点G.

(1) 当点P与点C重合时(如图).求证:BOG≌△POE;(4分)

(2)通过观察、测量、猜想:= ,并结合图证明你的猜想;(5分)

(3)把正方形ABCD改为菱形,其他条件不变(如图),若ACB=α,求的值.(用含α的式子表示)(5分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC,AB=6,AC=8,BC=10,则该三角形为( )

A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,下列的点在第二象限的是( )

A. 21 B. 2,-1 C. (-21 D. (-2,-1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO,已知BD=2
(1)求正方形ABCD的边长;
(2)求OE的长;
(3)①求证:CN=AF;②直接写出四边形AFBO的面积.

查看答案和解析>>

同步练习册答案