精英家教网 > 初中数学 > 题目详情
7.如图1,矩形ABCD中,AB=10,AD=8.将矩形ABCD折叠,使得顶点B落在CD边上的P点处.已知折痕AO与边BC交于点O,连结AP、OP、OA.
(1)求OC的长;
(2)若将△PCO沿着射线PA方向平移,设平移的距离为n(平移距离指点P沿PA方向所经过的线段长度).当点C分别平移到线段PO、AO上时,直接写出相应的n的值;
(3)如图2,将△PCO绕点O逆时针旋转一个角α,记旋转中的△PCO为△P′OC′.在旋转过程中,设P′O所在的直线与线段AP交于点Q,与射线AD交于点H.是否存在这样的Q、H两点,使△AQH为等腰三角形?若存在,求出此时AQ的长;若不存在,请说明理由.

分析 (1)利用折叠和勾股定理求得答案即可;
(2)过C作CC1∥PA,交PO于C2,由此利用三角形的面积和折叠的性质求得答案即可;
(3)分三种情况探讨:①当QA=QH时,②当AH=AQ时,③当HA=HQ时,逐一分析探讨得出答案即可.

解答 解:(1)∵折叠,
∴AP=AB=10,AD=8,
∴DP=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴CP=4,
设OC=x,在直角三角形中,
(8-x)2=x2+42
解得:x=3
∴OC=3;
(2)如图1,

①过C作CC1∥PA,交PO于C2
∵AP⊥PO,
∴CC1⊥PO,
∴CC1=$\frac{PC•CO}{PO}$=$\frac{12}{5}$=n;
②作P2C2∥AB,
则∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴AP2=P2C2=4,
∴PP2=10-4=n.
(3)①当QA=QH时,
∠DAQ=∠AHQ,
又∠AHQ=∠P′OC,
∵∠POC>∠DAP,
∴不存在.
②当AH=AQ时,
如图,

∵∠AQH=∠H,
∠H=∠QOC,
∴△EQO是等腰三角形,
∵∠EAB=∠APO,
∴tan∠EAB=$\frac{4}{3}$,
∴AE=$\frac{40}{3}$,
OE=$\frac{40}{3}$-5=$\frac{25}{3}$,
AE=$\frac{50}{3}$,
∴AQ=$\frac{50}{3}$-$\frac{25}{3}$=$\frac{25}{3}$.
③当HA=HQ时,
如图,

∠2=∠3.
又∵∠2=∠1,
∴∠1=∠4,
∵∠C=∠APO,
∴△PCO∽△QPO,
∴$\frac{PQ}{PC}$=$\frac{PO}{CO}$,
即PQ=$\frac{4×5}{3}$=$\frac{20}{3}$,
∴AQ=10-$\frac{20}{3}$=$\frac{10}{3}$.

点评 此题考查四边形的综合题,综合利用勾股定理,等腰三角形的性质,相似三角形的性质等知识解决问题,同时渗透分类讨论的思想.

练习册系列答案
相关习题

科目:初中数学 来源:2017届江苏省东台市第四教育联盟九年级下学期第一次月考数学试卷(解析版) 题型:填空题

如图,将矩形纸片ABCD沿EF折叠后,点C、D分别落在点C′、D′处,若∠AFE=65°,则∠C′EB=________度.

查看答案和解析>>

科目:初中数学 来源:2015-2016学年内蒙古巴彦淖尔市临河区七年级下学期期末考试数学试卷(解析版) 题型:判断题

在平面直角坐标系中,A、B、C三点的坐标分别为A(﹣6,7)、B(﹣3,0)、C(0,3).

(1)画出△ABC,

(2)并求△ABC的面积;

(3)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′;

(4)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=__________n=__________

查看答案和解析>>

科目:初中数学 来源:2015-2016学年内蒙古巴彦淖尔市临河区七年级下学期期末考试数学试卷(解析版) 题型:单选题

已知是二元一次方程4x+ay=7的一组解,则a的值为(  )

A. ﹣5 B. 5 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.一个含30°角的三角尺与一张圆形硬纸片如图放置在桌面上,圆心O在斜边AB上,三角尺的两直角边与圆相切,切点分别为M、N.若AC=3+$\sqrt{3}$,则阴影部分的面积为(  )
A.2$\sqrt{3}$-πB.$\sqrt{3}$-$\frac{1}{6}$πC.$\sqrt{3}$-$\frac{2}{3}$πD.$\frac{9\sqrt{3}}{2}$-$\frac{3}{2}$π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示.长方形ABCD的周长是32cm,且5AD=3AB,把长方形ABCD绕直线AB旋转一周,然后用平面沿线段AB的方向截所得的几何体,求截面的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,有一张面积为1的正方形纸片ABCD,M、N分别是AD,BC边上的中点,将点C折叠至MN上,落在P点的位置上,折痕为BQ,连PQ,则PQ的长为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.把下列各式因式分解
(1)x2-5x-6
(2)4x2y-4xy+y.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点P在线段AB上以每秒1个单位的速度从点B向点A运动,同时点Q在线段AC上以同样的速度从点A向点C运动,运动的时间用t(单位:秒)表示.
(1)直接写出线段AB的长为5;
(2)经过t秒时,AQ的长为t,AP的长为5-t(用含t的代数式表示);
(3)求当t为何值时,△APQ与△ABC相似?

查看答案和解析>>

同步练习册答案