精英家教网 > 初中数学 > 题目详情
10.如图,已知正方形ABCD,以AB为边向外作等边三角形ABE,CE与DB相交于点F,则∠AFD的度数60°.

分析 根据正方形及等边三角形的性质求得∠AFE,∠BFE的度数,再根据三角形外角的性质即可求得答案.

解答 解:∵∠CBA=90°,∠ABE=60°,
∴∠CBE=150°,
∵四边形ABCD为正方形,三角形ABE为等边三角形
∴BC=BE,
∴∠BEC=15°,
∵∠FBE=∠DBA+∠ABE=105°,
∴∠BFE=60°,
在△CBF和△ABF中,
$\left\{\begin{array}{l}{BF=BF}\\{∠CBF=∠ABF}\\{BC=BA}\end{array}\right.$,
∴△CBF≌△ABF(SAS),
∴∠BAF=∠BCE=15°,
又∵∠ABF=45°,且∠AFD为△AFB的外角,
∴∠AFD=∠ABF+∠FAB=15°+45°=60°.
故答案为60°.

点评 本题考查等边三角形的性质、等腰三角形的性质及三角形内角和定理的综合运用,关键是根据正方形及等边三角形的性质求得∠AFE,∠BFE的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,已知等腰三角形ABC中,AB=AC=10cm,∠A=30°,P是BC上一点,PE⊥AB,PF⊥AC,垂足分别为点E、F,则PE+PF=(  )
A.2.5cmB.2$\sqrt{2}$cmC.5cmD.2$\sqrt{3}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列各组中的两项,不是同类项的是(  )
A.23与32B.m2n与$-\frac{1}{2}m{n^2}$C.2πR与π2RD.-x2y与2yx2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列各曲线中不能表示y是x的函数的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知菱形的四个顶点分别是A、B、C、D,顶点A(2,2)、D(4,-2)且点B在x轴上,点C在平面直角坐标系内,求顶点B、C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.与$\sqrt{3}$+1最接近的整数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,则BE的长为(  )
A.$\sqrt{2}$B.2C.4$\sqrt{2}$-4D.4-2$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在△ABC中,点D、E分别在边AC、BC上,下列条件中不能判断△CAB∽△CED的是(  )
A.∠CDE=∠BB.∠CED=∠AC.$\frac{CD}{CE}=\frac{CB}{CA}$D.$\frac{CD}{CA}=\frac{CE}{AB}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=$\frac{k}{x}$相交于A,B两点,已知A(2,5).
(1)求k和b的值;
(2)求△OAB的面积.

查看答案和解析>>

同步练习册答案