精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,BE与AD交于点F,连接DE.
求证:(1)△DCE是等腰三角形;
(2)AB•FE=AF•BD.
分析:(1)根据“圆内接四边形的外角等于内对角”这一性质可得∠1=∠ABC,而AB=AC,即∠ABC=∠C,可得∠1=∠C,所以△DCE是等腰三角形.
(2)由结论AB•FE=AF•BD探求,即要证明
AB
AF
=
BD
FE
,由此,只需要证明△ABD∽△AFE,再寻找两个三角形相似的条件即可.
解答:精英家教网证明:(1)∵AB=AC,
∴∠ABC=∠C.
又∵∠1=∠ABC,
∴∠1=∠C.
∴△DEC是等腰三角形.

(2)在△ABD和△AFE中,
∵AB是⊙O的直径,
∴∠2=∠3=90°.
∴AD⊥BC.
又AB=AC,
∴∠4=∠5.
又∠2=∠3=90°,
∴△ABD∽△AFE.
AB
AF
=
BD
FE

∴AB•EF=AF•BD.
点评:本题重点考查了圆内接四边形的外角性质、同弧所对的圆周角相等、直径所对的圆周角为直角的知识,本题是一道探究性的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案