精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,AC=3,tanA=.点D,E分别是边BC,AC上的点,且∠EDC=∠A.将△ABC沿DE所在直线对折,若点C恰好落在边AB上,则DE的长为___

【答案】

【解析】

ABC沿DE对折,点C恰好落在ABF点处,CFDE相交于O点,根据折叠的性质得到DECF,OC=OF,再根据等角的余角相等得∠1=EDC,而∠EDC=A,则∠1=A,所以FC=FA,同理可得FC=FB,于是有CF=AB,OC=AB,然后根据正切的定义和勾股定理得到BC=4,AB=5,所以OC=,再分别在RtOECRtODC中,利用正切的定义计算出OE=,OD=,再计算OE+OD即可.

ABC沿DE对折,点C恰好落在ABF点处,CFDE相交于O点,如图,

DECF,OC=OF,

∵∠EDC+OCD=90°1+OCD=90°

∴∠1=EDC,

而∠EDC=A,

∴∠1=A,

FC=FA,

同理可得FC=FB,

CF=AB,

OC=AB,

RtABC中,∠C=90°,AC=3,

tanA=

BC=4,

AB==5,

OC=

RtOEC中,tan1=tanA=

OE=

RtODC中,tanODC=tanA=

OD=

DE=OD+OE=+=

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4,EBC中点,AEBC于点E,AFCD于点F,CGAE,CGAF于点H,交AD于点G.

(1)求菱形ABCD的面积;(2)求∠CHA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形一腰上的高与另一腰的夹角为38°,则该等腰三角形的底角的度数为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们有时会碰上形如的式子,其实我们可以将其进一步分母有理化.

形如的式子还可以用以下方法化简:.*

1)请用不同的方法化简(写出化简过程):

i)参照分母有理化的方法得______________________________

ii)参照(*)式的化简方法得______________________________.

2)化简:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CDCE分别是△ABC的高和角平分线,∠BACα,∠Bβαβ).

1)若α70°,β40°,求∠DCE的度数;

2)试用αβ的代数式表示∠DCE的度数(直接写出结果);

3)如图,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且αβ30°,求∠DCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

小明遇到一个问题:已知:如图1,在ABC中,∠BAC=120°,ABC=40°,试过ABC的一个顶点画一条直线,将此三角形分割成两个等腰三角形.

他的做法是:如图2,首先保留最小角∠C,然后过三角形顶点A画直线交BC于点D. 将∠BAC分成两个角,使∠DAC=20°ABC即可被分割成两个等腰三角形.

喜欢动脑筋的小明又继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.

他的做法是:

如图3,先画ADC ,使DA=DC,延长AD到点B,使BCD也是等腰三角形,如果DC=BC,那么∠CDB =ABC,因为∠CDB=2A,所以∠ABC= 2A.于是小明得到了一个结论:

当三角形中有一个角是最小角的2倍时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.

请你参考小明的做法继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请直接写出你所探究出的另外两条结论(不必写出探究过程或理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙只捕捞船同时从A港出海捕鱼,甲船以每小时15 km的速度沿北偏西60°方向前进,乙船以每小时15 km的速度沿东北方向前进.甲船航行2 h到达C处,此时甲船发现渔具丢在了乙船上,于是甲船快速(匀速)沿北偏东75°的方向追赶乙船,结果两船在B处相遇.问:

(1)甲船从C处出发追赶上乙船用了多少时间?

(2)甲船追赶乙船的速度是每小时多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B…;依此类推,则平行四边形AO2016C2017B的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中, ∠C=90°,边AB的垂直平分线交AB、AC分别于点D,点E,连结BE.

(1)若∠A=40°,求∠CBE的度数.

(2)若AB=10,BC=6,求△BCE的面积.

查看答案和解析>>

同步练习册答案