【题目】如图,抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B的坐标为(3,0),点C的坐标为(0,﹣5).有一宽度为1,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.
(1)求抛物线的解析式及点A的坐标;
(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=,求点Q的坐标;
(3)在矩形的平移过程中,是否存在以点P,Q,M,N为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)y=x2+x﹣5,A(﹣5,0);(2)Q坐标(﹣4,﹣);(3)存在,点M的坐标为(﹣2,﹣3)或(﹣2+,﹣3﹣)或(﹣2﹣,﹣3+).
【解析】
(1)将点B的坐标、点C的坐标分别代入函数解析式求得b、c的值,结合抛物线解析式求得点A的坐标;
(2)作FG⊥AC于G,设点F坐标(m,0),根据sin∠AMF=,列出方程即可解决问题.
(3))①当MN是对角线时,设点F(m,0),由QN=PM,列出方程即可解决问题.②当MN为边时,设点Q(m,m2+m-5)则点P(m+1,m2+m-6),代入抛物线解析式,解方程即可.
(1)∵抛物线上的点B的坐标为(3,0),点C的坐标为(0,﹣5)
∴将其代入y═x2+bx+c,得,
解得b=,c=﹣5.
∴抛物线的解析式为y=x2+x﹣5.
令y=0可得x=3或-5
∴点A的坐标是(﹣5,0).
(2)作FG⊥AC于G,设点F坐标(m,0),
则AF=m+5,AE=EM=m+6,FG=(m+5),FM=,
∵sin∠AMF=,
∴,
∴,
整理得到2m2+19m+44=0,
∴(m+4)(2m+11)=0,
∴m=﹣4或﹣5.5(舍弃),
∴点Q坐标(﹣4,﹣).
(3)①当MN是对角线时,点M在y轴的右侧,设点F(m,0),
∵直线AC解析式为y=﹣x﹣5,
∴点N(m,﹣m﹣5),点M(m+1,﹣m﹣6),
∵QN=PM,
∴﹣m﹣5﹣(m2+m﹣5)=[(m+1)2+(m+1)﹣5]﹣(﹣m﹣6),
解得m=﹣3+或﹣3﹣(舍弃),
此时M(﹣2+,﹣3﹣),
当MN是对角线时,点N在点A的左侧时,设点F(m,0).
∴(m2+m﹣5)﹣(﹣m﹣5)=(﹣m﹣6)﹣[(m+1)2+(m+1)﹣5],
解得m=﹣3﹣或﹣3+(舍弃),
此时M(﹣2﹣,﹣3+);
②当MN为边时,设点Q(m,m2+m﹣5)则点P(m+1,m2+m﹣6),
∵NQ=PM,
∴m2+m﹣6=(m+1)2+(m+1)﹣5
解得m=﹣3.
∴点M坐标(﹣2,﹣3),
综上所述,以点P,Q,M,N为顶点的四边形是平行四边形时,点M的坐标为(﹣2,﹣3)或(﹣2+,﹣3﹣)或(﹣2﹣,﹣3+).
科目:初中数学 来源: 题型:
【题目】下列一元二次方程两实数根和为﹣4的是( )
A. x2+2x﹣4=0 B. x2﹣4x+4=0 C. x2+4x+10=0 D. x2+4x﹣5=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)有以下三种说法:
①不论m为何值,函数图象一定过定点(﹣1,﹣3);
②当m=﹣1时,函数图象与坐标轴有3个交点;
③当m<0,x≥﹣时,函数y随x的增大而减小;判断真假,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=x+4图象与反比例函数y= (k≠0)图象交于A(﹣1,a),B两点.
(1)求此反比例函数的表达式;
(2)若x+4≥,利用函数图象求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD,边长等于2,点E、F、G、H分别是AB、BC、CD、DA的中点,图中阴影部分由四个小扇形组成,对于下列判断中正确的有( )
①空白图形空白部分的周长=2 ②空白部分的面积=
③四个小扇形的面积和 = ④菱形的面积=4
A 1个 B 2个 C 3个 D 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示. 请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,不放回再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com