2£®ÒÑÖª£ºÈçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¾ØÐÎOABCµÄ±ßOAÔÚyÖáµÄÕý°ëÖáÉÏ£¬OCÔÚxÖáµÄÕý°ëÖáÉÏ£¬OA=2£¬OC=3£®¹ýÔ­µãO×÷¡ÏAOCµÄƽ·ÖÏß½»ABÓÚµãD£¬Á¬½ÓDC£¬¹ýµãD×÷DE¡ÍDC£¬½»OAÓÚµãE£®
£¨1£©Çó¹ýµãE¡¢D¡¢CµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Éè¹ýµãE¡¢D¡¢CµÄÅ×ÎïÏßÓëxÖḺ°ëÖá½»ÓÚµãG£¬F£¨-$\frac{7}{5}$£¬0£©¾ØÐÎFGMNλÖÃÈçͼ2Ëùʾ£¬NF=OF£¬½«¾ØÐÎFGMNÒÔ1¸öµ¥Î»/ÃëµÄËÙ¶È´Óͼ2ËùʾλÖÃÑØxÖáÕý·½ÏòÔÈËÙÆ½ÒÆ£¬Í¬Ê±µãPÒ²ÒÔͬÑùµÄËÙ¶È´ÓµãG³ö·¢ÑØÉäÏßGMµÄ·½ÏòÔÈËÙÔ˶¯£¬¼ÇµãG¾­¹ýÔ­µãOºóµÄÔ˶¯Ê±¼äΪt£¨0¡Üt¡Ü3£©£¬ÉäÏßGM½»Å×ÎïÏßÓÚµãQ£¬ÉèµãN¡¢F¡¢P¡¢QΪ¶¥µãµÄ¶à±ßÐεÄÃæ»ýΪS£¬¢ÙÊÔÇó³öSÓëtµÄº¯Êý¹ØÏµ£»¢ÚSÊÇ·ñ´æÔÚ×î´óÖµ£¬Èô´æÔÚ£¬Çó³ö´ËʱµãGµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèµãR£¨3£¬1£©¼Ç¹ýµãE¡¢D¡¢CµÄÅ×ÎïÏßΪC1£¬½«Å×ÎïÏßC1ÈÆ×ŵãRÐýת180¡ãµÃÅ×ÎïÏßC2£¬ÉèC2½»xÖáÓÚµãS¡¢T£¨SÔÚTµÄ×ó²à£©£¬ÔÚÅ×ÎïÏßC1µÄ¶Ô³ÆÖáÉÏÊÇ·ñ´æÔÚµãK£¬Ê¹µÃ¡÷DSKµÄÃæ»ý²»´óÓÚ6£¬Èô´æÔÚ£¬ÇëÇó³öµãKµÄ×Ý×ø±êµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÏÈÇó³öµãE¡¢D¡¢CµÄ×ø±ê£¬ÔÙÔËÓôý¶¨ÏµÊý·¨Çó½â¼´¿É£»
£¨2£©ÓÃt±íʾ³öµãGºÍQ×ø±ê£ºOG=t£¬G£¨t£¬0£©£¬Q£¨t£¬$-\frac{5}{6}$t2+$\frac{13}{6}$t+1£©£¬ÔÙÓÃt±íʾÏß¶ÎGP£¬QP£¬GP=$\frac{2}{5}$+t£¬QP=$-\frac{5}{6}$t2+$\frac{13}{6}$t+1-£¨$\frac{2}{5}$+t£©=$-\frac{5}{6}$t2+$\frac{7}{6}$t+$\frac{3}{5}$£¬µãN¡¢F¡¢P¡¢QΪ¶¥µãµÄ¶à±ßÐÎÊÇÒ»¸öÌÝÐΣ¬¢Ù¸ù¾ÝÃæ»ý¹«Ê½¼´¿ÉÁгöº¯Êý¹ØÏµÊ½£»
¢ÚÔËÓöþ´Îº¯ÊýµÄ¶¥µã¹«Ê½¿ÉÇó³öÃæ»ý×î´óʱµÄtµÄÖµ£»
£¨3£©½áºÏÐýת180¡ãµÄ֪ʶÇó³öC2µÄ½âÎöʽ£¬Áîy=0Çó³öÓëxÖá½»µã×ø±ê£¬Éè³öµãKµÄ×Ý×ø±ê£¬±íʾ³ö¡÷DSKµÄÃæ»ý£¬¸ù¾ÝÃæ»ý²»´óÓÚ6£¬¼´¿ÉÇó½â£®

½â´ð ½â£ºÓɾØÐÎOABCµÄ±ßOA=3£¬OC=3£¬
¡àµãA£¨0£¬2£©£¬µãC£¨3£¬0£©£¬¡ÏAOC=90¡ã£¬¡ÏOAB=90¡ã£¬AB=OC=3£¬BC=OA=2£¬
¡ßODƽ·Ö¡ÏAOC£¬
¡à¡ÏAOD=45¡ã£¬
¡à¡ÏOBA=45¡ã
¡àAD=0A=2£¬BD=AB-AD=3-2=1£¬
¡àµãD£¨2£¬2£©
¡ßDE¡ÍDC£¬
¡à¡ÏADE+¡ÏBDC=90¡ã£¬
ÓÖ¡ß¡ÏBDC+¡ÏBCD=90¡ã£¬
¡à¡ÏADE=¡ÏBCD£¬
¡ß¡ÏCBD=¡ÏDAE=90¡ã£¬AD=BC=2£¬
ÔÚ¡÷AEDºÍ¡÷BDCÖУ¬
$\left\{\begin{array}{l}{¡ÏCBD=¡ÏDAE}\\{AD=BC}\\{¡ÏADE=¡ÏBCD}\end{array}\right.$
¡à¡÷AED¡Õ¡÷BDC£¨SAS£©£¬
¡àAE=BD=1
¡àµãE£¨0£¬1£©
£¨1£©ÉèÅ×ÎïÏß½âÎöʽΪ£ºy=ax2+bx+c£¬
°ÑE£¨0£¬1£©£¬D£¨2£¬2£©£¬C£¨3£¬0£©×ø±ê´úÈëµÃ£º1=c£»  2=4a+2b+c£»   0=9a+3b+c£¬
½âµÃ£ºa=$-\frac{5}{6}$£¬b=$\frac{13}{6}$£¬c=1£¬
ËùÒÔ£º¹ýµãE¡¢D¡¢CµÄÅ×ÎïÏߵĽâÎöʽΪ£ºy=$-\frac{5}{6}$x2+$\frac{13}{6}$x+1£®
£¨2£©¢Ù
y=$-\frac{5}{6}$x2+$\frac{13}{6}$x+1£¬µ±y=0ʱ£¬0=$-\frac{5}{6}$x2+$\frac{13}{6}$x+1£¬½âµÃ£ºx1=3£¬x2=$-\frac{2}{5}$£¬
¡àG£¨$-\frac{2}{5}$£¬0£©£¬OG=$\frac{2}{5}$£¬
ÓÉF£¨$-\frac{7}{5}$£¬0£©µÃ£ºOF=$\frac{7}{5}$£¬FN=OF=$\frac{7}{5}$£¬FG=$-\frac{2}{5}$-£¨$-\frac{7}{5}$£©=1
µãG¾­¹ýÔ­µãOºóµÄÔ˶¯Ê±¼äΪtʱ£¬OG=t£¬G£¨t£¬0£©£¬GP=$\frac{2}{5}$+t
µ±x=tʱ£¬y=$-\frac{5}{6}$t2+$\frac{13}{6}$t+1
¡àQ£¨t£¬$-\frac{5}{6}$t2+$\frac{13}{6}$t+1£©£¬
¡àQP=$-\frac{5}{6}$t2+$\frac{13}{6}$t+1-£¨$\frac{2}{5}$+t£©=$-\frac{5}{6}$t2+$\frac{7}{6}$t+$\frac{3}{5}$
S=£¨NF+QP£©¡ÁFG¡Á$\frac{1}{2}$
S=£¨$\frac{7}{5}$+$-\frac{5}{6}$t2+$\frac{7}{6}$t+$\frac{3}{5}$£©¡Á1¡Á$\frac{1}{2}$
S=$-\frac{5}{12}$t2+$\frac{7}{12}$t+1
¢ÚS=$-\frac{5}{12}$t2+$\frac{7}{12}$t+1
¹Êµ±t=-$\frac{\frac{7}{12}}{2¡Á£¨-\frac{5}{12}£©}$=$\frac{7}{10}$ʱ£¬S×î´ó£¬´ËʱµãG£¨$\frac{7}{10}$£¬0£©

£¨3£©C1£ºy=$-\frac{5}{6}$x2+$\frac{13}{6}$x+1£¬
ÉèC1Éϵĵ㣨x£¬y£©ÈƵãR£¨3£¬1£©Ðýת180¡ãºóµÃµ½C2ÉϵĶÔÓ¦µãΪ£¨x¡ä£¬y¡ä£©
ÔòÓУº$\frac{x+x¡ä}{2}=3$£¬$\frac{y+y¡ä}{2}=1$£¬
½âµÃ£ºx¡ä=6-x£¬y¡ä=2-x
¡àC2£º2-y=$-\frac{5}{6}$£¨6-x£©2+$\frac{13}{6}$£¨6-x£©+1
ÕûÀíµÃ£ºy=$\frac{5}{6}$x2-$\frac{47}{6}$x+18
µ±y=0ʱ£¬0=$\frac{5}{6}$x2-$\frac{47}{6}$x+18£¬½âµÃ£ºx1=4£¬x2=$\frac{27}{5}$
SÔÚTµÄ×ó²à¿ÉÖª£ºµãS£¨4£¬0£©
C1£ºy=$-\frac{5}{6}$x2+$\frac{13}{6}$x+1µÄ¶Ô³ÆÖáΪ£ºx=$\frac{13}{10}$£¬
ÉèKµãµÄ×Ý×ø±êΪy
ÉèÖ±ÏßSD£ºy=mx+n£¬°ÑµãS£¨4£¬0£©ºÍµãD£¨2£¬2£©×ø±ê´úÈëµÃ£º$\left\{\begin{array}{l}{0=4m+n}\\{2=2m+n}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{m=-1}\\{n=4}\end{array}\right.$
¡àÖ±ÏßSD£ºy=-x+4
µ±x=$\frac{13}{10}$ʱ£¬y=2.7£¬´ËʱS£¬D£¬KÔÚÒ»ÌõÖ±ÏßÉÏ£¬y¡Ù2.7
¹ýµãG×÷ƽÐÐÓÚxÖáµÄÖ±ÏßÓëÖ±ÏßSDÏཻ£¬½»µãµÄºá×ø±êΪ£ºx=4-y£¬Óëx=$\frac{13}{10}$µÄ¾àÀëΪ£º4-y-$\frac{13}{10}$
Èçͼ4£ºµ±0¡Üy£¼2.7ʱ£¬¡÷DSK1µÄÃæ»ýΪ£º£¨4-y-$\frac{13}{10}$£©¡Á2¡Á$\frac{1}{2}$=2.7-y£¬¡ß0¡Üy£¼2.7¡à2.7-y£¼6£¬Âú×ãÌâÒâ
µ±y£¼0ʱ£¬¡÷DSK3µÄÃæ»ýΪ£º£¨4-y-$\frac{13}{10}$£©¡Á[£¨2-y£©-£¨-y£©]¡Á$\frac{1}{2}$=2.7-y£¬¡à2.7-y¡Ü6£¬½âµÃ£ºy¡Ý-3.3£®¡à0£¾y¡Ý-3.3ʱÂú×ãÌâÒâ
µ±y£¾2.7ʱ£¬¡÷DSK2µÄÃæ»ýΪ£º[$\frac{13}{10}$-£¨4-y£©]¡Á[y-£¨y-2£©]¡Á$\frac{1}{2}$=y-2.7£¬¡ày-2.7¡Ü6£¬½âµÃ£ºy¡Ü8.7£®¡à2.7£¼y¡Ü8.7Âú×ãÌâÒâ
×ÛÉÏËùÊö£ºÊ¹µÃ¡÷DSKµÄÃæ»ý²»´óÓÚ6ʱµÄµãKµÄ×Ý×ø±êµÄ·¶Î§ÊÇ£º-3.3¡Üy¡Ü8.7£¬ÇÒy¡Ù2.7£®

               ͼ4

µãÆÀ ´ËÌâÖ÷Òª¿¼²ì¶þ´Îº¯ÊýµÄ×ÛºÏÐÔÎÊÌ⣬ÊìϤ¾ØÐεÄÐÔÖÊ£¬»áÓôý¶¨ÏµÊý·¨£¬»áÓÃʱ¼ä±íʾÏ߶νøÒ»²½±íʾµãµÄ×ø±ê£¬²¢½áºÏÌâÒ⽨Á¢¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌâÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®£¨1£©½â·½³Ì£º£¨x-1£©2=9
£¨2£©¼ÆË㣺${£¨-\sqrt{3}£©^2}-\sqrt{{{£¨-4£©}^2}}-\root{3}{-8}-|{1-\sqrt{2}}|$
£¨3£©¼ÆË㣺$\frac{{\sqrt{27}+\sqrt{48}}}{{\sqrt{3}}}$
£¨4£©¼ÆË㣺$£¨\sqrt{7}+\sqrt{3}£©£¨\sqrt{7}-\sqrt{3}£©-{£¨2+\sqrt{5}£©^2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁи÷×éÊÇͬÀàÏîµÄÒ»×éÊÇ£¨¡¡¡¡£©
A£®5xyÓë2xyzB£®2Óë-7C£®-2x2yÓë5y2zD£®3acÓë7bc

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®·½³Ì2x2-2x-1=0µÄ¸ùµÄÇé¿öΪ£¨¡¡¡¡£©
A£®Ã»ÓÐʵÊý¸ùB£®ÓÐÁ½¸öÏàµÈµÄʵÊý¸ù
C£®ÓÐÁ½¸öÕýʵÊý¸ùD£®ÓÐÒ»¸öÕýʵÊý¸ùºÍÒ»¸ö¸ºÊµÊý¸ù

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÒ»×éÊý¾Ýx1£¬x2£¬¡­£¬xnµÄ±ê×¼²îÊÇa£¬ÔòÊý¾Ý5x1-2£¬5x2-2£¬¡­£¬5xn-2µÄ·½²îÊÇ25a2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¹ØÓÚa£¬bµÄ·½³Ì×é$\left\{\begin{array}{l}{a+5b=12}\\{3a-b=4}\end{array}\right.$£¬Ôòa+bµÄֵΪ£¨¡¡¡¡£©
A£®-4B£®4C£®-2D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª£¬Èçͼ1£¬BDÊDZ߳¤Îª1µÄÕý·½ÐÎABCDµÄ¶Ô½ÇÏߣ¬BEƽ·Ö¡ÏDBC½»DCÓÚµãE£¬ÑÓ³¤BCµ½µãF£¬Ê¹CF=CE£¬Á¬½ÓDF£¬½»BEµÄÑÓ³¤ÏßÓÚµãG£®
£¨1£©ÇóÖ¤£º¡÷BCE¡Õ¡÷DCF£»    
£¨2£©ÇóCFµÄ³¤£»
£¨3£©Èçͼ2£¬ÔÚABÉÏȡһµãH£¬ÇÒBH=CF£¬ÈôÒÔBCΪxÖᣬABΪyÖὨÁ¢Ö±½Ç×ø±êϵ£¬ÎÊÔÚÖ±ÏßBDÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔB¡¢H¡¢PΪ¶¥µãµÄÈý½ÇÐÎΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Ö±½Óд³öËùÓзûºÏÌõ¼þµÄPµã×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èç¹ûy=£¨m-2£©${x}^{{m}^{2}-3}$+2ÊÇÒ»´Îº¯Êý£¬ÄÇômµÄÖµÊÇ£¨¡¡¡¡£©
A£®2B£®-2C£®¡À2D£®$¡À\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ò»Ï³ÌÓɼ׹¤³Ì¶Óµ¥¶ÀÍê³ÉÐèÒª12Ì죬ÓÉÒÒ¹¤³Ì¶Óµ¥¶ÀÍê³ÉÐèÒª16Ì죬¼×¹¤³Ì¶Óµ¥¶ÀÊ©¹¤5Ììºó£¬Îª¼Ó¿ì¹¤³Ì½ø¶È£¬ÓÖ³éµ÷ÒÒ¹¤³Ì¶Ó¼ÓÈë¸Ã¹¤³ÌÊ©¹¤£¬ÎÊ»¹Ðè¶àÉÙÌì¿ÉÒÔÍê³É¸Ã¹¤³Ì£¿Èç¹ûÉ軹ÐèÒªxÌì¿ÉÒÔÍê³É¸Ã¹¤³Ì£¬ÔòÏÂÁз½³ÌÕýÈ·µÄΪ£¨¡¡¡¡£©
A£®$\frac{x}{12}+\frac{x}{16}=1$B£®$\frac{x}{16}+\frac{5+x}{12}=1$C£®12£¨5+x£©+16x=1D£®12£¨5+x£©=16x

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸