精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,ADBCECD的中点,连接AEBE,延长AEBC的延长线于点F

1)求证:DAE≌△CFE

2)若ABBC+AD,求证:BEAF

【答案】1)见解析;(2)见解析

【解析】

1)根据ADBC可知∠ADC=ECF,再根据ECD的中点可求出△ADE≌△FCE
2)由(1)知△ADE≌△FCE,得到AE=EFAD=CF,由于AB=BC+AD,等量代换得到AB=BC+CF,即AB=BF,证得△ABE≌△FBE,即可得到结论.

证明:(1ADBC(已知),

∴∠ADCECF(两直线平行,内错角相等),

ECD的中点(已知),

DEEC(中点的定义).

ADEFCE中,

∴△ADE≌△FCEASA);

2)由(1)知ADE≌△FCE

AEEFADCF

ABBC+AD

ABBC+CF

ABBF

ABEFBE中,

∴△ABE≌△FBESSS),

∴∠AEBFEB90°

BEAF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),

C(3,4)

⑴ 作出与△ABC关于y轴对称△A1B1C1,并写出 三个顶点的坐标为:A1 ),B1 ),C1 );

⑵ 在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标;

⑶ 在 y 轴上是否存在点 Q,使得SAOQ=SABC,如果存在,求出点 Q 的坐标,如果不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,点开始沿折线的速度运动,点开始沿边以的速度移动,如果点分别从同时出发,当其中一点到达时,另一点也随之停止运动,设运动时间为,当________时,四边形也为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D是△ABC内部的一点,BD=CD,过点DDEAB,DFAC,垂足分别为E、F,且BE=CF.求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,中,

从点开始沿边向的速度移动,点点开始沿边向点的速度移动.如果分别从同时出发,线段能否将分成面积相等的两部分?若能,求出运动时间;若不能说明理由.

点沿射线方向从点出发以的速度移动,点沿射线方向从点出发以的速度移动,同时出发,问几秒后,的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周未,小丽骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小丽离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程ykm)与小丽离家时间xh)的函数图象.

1)小丽骑车的速度为   km/hH点坐标为   

2)求小丽游玩一段时间后前往乙地的过程中yx的函数关系;

3)小丽从家出发多少小时后被妈妈追上?此时距家的路程多远.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一棵树CD10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点PQ是直线y=x+2上的两点,点P在点Q的左侧,且满足OP=OQOPOQ,则点Q的坐标是______.

查看答案和解析>>

同步练习册答案