精英家教网 > 初中数学 > 题目详情

【题目】(2016江苏省镇江市) (2016镇江)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数x>0)的图象交于点B(4,b).

(1)b= k=

(2)点C是线段AB上的动点(于点AB不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求OCD面积的最大值;

(3)将(2)中面积取得最大值的OCD沿射线AB方向平移一定的距离,得到OCD,若点O的对应点O落在该反比例函数图象上(如图2),则点D的坐标是

【答案】111;(2;(3D′().

【解析】试题(1)由点B的横坐标利用反比例函数图象上点的坐标特征即可求出b值,进而得出点B的坐标,再将点B的坐标代入一次函数解析式中即可求出k值;

(2)设Cmm﹣3)(0<m<4),则Dm),根据三角形的面积即可得出SOCD关于m的函数关系式,通过配方即可得出OCD面积的最大值;

(3)由(1)(2)可知一次函数的解析式以及点CD的坐标,设点C′(aa﹣3),根据平移的性质找出点O′、D的坐标,由点O在反比例函数图象上即可得出关于a的方程,解方程求出a的值,将其代入点D的坐标中即可得出结论.

试题解析:解:(1)把B(4,b)代入x>0)中得:b==1,∴B(4,1),把B(4,1)代入y=kx﹣3得:1=4k﹣3,解得:k=1,故答案为:1,1;

(2)设Cmm﹣3)(0<m<4),则Dm),∴SOCD===,∵0<m<4,<0,∴m=时,OCD面积取最大值,最大值为

(3)由(1)知一次函数的解析式为y=x﹣3,由(2)知C,﹣)、D).

C′(aa﹣3),则O′(aa),D′(aa+),∵O在反比例函数x>0)的图象上,,解得:a=a=﹣(舍去),经检验a=是方程的解,D的坐标是().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在半⊙O中,AB是直径,点D⊙O上一点,点C的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③P△ACQ的外心;④AC2=CQCB,其中结论正确的是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax+x+4的对称轴是直线x3,且与轴相交于AB两点(B点在A点的右侧),与轴交于C点.

1)求出A点的坐标、B点坐标;

2)求出直线BC的解析式;

3)点Q是直线BC上方的抛物线上的一动点(不与BC重合),是否存在点Q,使QBC的面积最大.若存在,请求出QBC的最大面积,若不存在,试说明理由;

(4)Ex轴上,点F在抛物线上,以ACEF为顶点的四边形是平行四边形时,请直接写出点E的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min;其中正确的个数为是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为-1,3,则下列结论正确的个数有 ac<0;2a+b=0;4a+2b+c>0;对于任意x均有ax2+bxa+b

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1xx轴交点A恰好是二次函数y2x轴的其中一个交点,已知二次函数图象的对称轴为x1,并与y轴的交点为D(01)

(1)求二次函数的解析式;

(2)设该二次函数与一次函数的另一个交点为C点,连接DC,求三角形ADC的面积.

(3)根据图象,直接写出当y1y2x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x,点A1坐标为(10),过点A1x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,按此做法进行下去,点A4的坐标为______,点An______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数和函数(m是常数,且)的图象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.

(1)求证:四边形ABFC是菱形;

(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.

查看答案和解析>>

同步练习册答案