【题目】在四边形ABCD中,,对角线AC平分.
如图1,若,,探究AD、AB与对角线AC三者之间的数量关系,写出结论,不必证明.
如图2若将中的条件“”去掉,中的结论是否还成立?并证明你的结论;
如图3,若,试探究AD、AB与对角线AC三者之间的数量关系,写出结论,不必证明.
科目:初中数学 来源: 题型:
【题目】某工程队用甲、乙两台隧道挖掘机从两个方向挖掘同一条隧道,因为地质条件不同,甲、乙的挖掘速度不同,已知甲、乙同时挖掘天,可以挖米,若甲挖天,乙挖天可以挖掘米.
(1)请问甲、乙挖掘机每天可以挖掘多少米?
(2)若乙挖掘机比甲挖掘每小时多挖掘米,甲、乙每天挖掘的时间相同,求甲每小时挖掘多少米?
(3)若隧道的总长为米,甲、乙挖掘机工作天后,因为甲挖掘机进行设备更新,乙挖掘机设备老化,甲比原来每天多挖米,同时乙比原来少挖米.最终,甲、乙两台挖掘机在相同时间里各完成隧道总长的一半,请用含,的代数式表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在图一中,将等边绕BC边中点D顺时针旋转至,直线AG与直线CF交于点求证.小明同学的思路是这样的:通过证明∽得到,从而得到,继续推理就可以使问题得到解决.
请根据小明的思路,求证:;
爱动脑筋的小明把问题做了进一步思考,他想:如果把题目的“等边”改成“等腰直角,其中,”,如图二,中的结论还成立吗?如果成立,求此时线段BM的最大值.
小明继续大胆设问:如图三,在中,,,将这样的按照题目中的方式旋转,请直接写出AG与CF的位置关系以及线段BM的变化范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
请直接写出线段AF,AE的数量关系;
将绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
若,,在图的基础上将绕点C继续逆时针旋转一周的过程中,当平行四边形ABFD为菱形时,直接写出线段AE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,求t的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=5,AC=4,∠B,∠C的平分线相交于点O,OM∥AB,ON∥AC分别与BC交于点M、N,则△OMN的周长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在课外活动时间,甲、乙、丙做“互相踢毽子”游戏,毽子从一人传给另一人就记为一次踢毽.
若从甲开始,经过三次踢毽后,毽子踢到乙处的概率是多少?请说明理由;
若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从______开始踢.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高饮水质量,越来越多的居民开始选购家用净水器.一商家抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.
(1)求A、B两种型号家用净水器各购进了多少台;
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元?(注:毛利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),B点坐标为(5,0)点C(0,5),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MAB的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com