【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),B点坐标为(5,0)点C(0,5),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MAB的面积。
![]()
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,
,对角线AC平分
.
如图1,若
,
,探究AD、AB与对角线AC三者之间的数量关系,写出结论,不必证明.
如图2若将
中的条件“
”去掉,
中的结论是否还成立?并证明你的结论;
如图3,若
,试探究AD、AB与对角线AC三者之间的数量关系,写出结论,不必证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=3,AD=4,动点P从点B出发,以每秒1个单位的速度,沿BA向点A移动;同时点Q从点C出发,以每秒2个单位的速度,沿CB向点B移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤2),解答下列问题:
(1)当x为何值时,PQ⊥DQ;
(2)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最小值?并求出最小值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD-BE=DE.其中正确的结论是____.(把所有正确结论的序号都写在横线上)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90°,AB=8,CB=6,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
![]()
(1)当t=2秒时,求PQ的长;
(2)求出发时间为几秒时,△PQB是等腰三角形?
(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数,完全平方数是非负数.例如:0=02,1=12,4=22,9=32,16=42,25=52,36=62,121=112….
(1)若28+210+2n是完全平方数,求n的值.
(2)若一个正整数,它加上61是一个完全平方数,当减去11是另一个完全平方数,写出所有符合的正整数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:
和同一平面内的点
.
(1)如图1,若点
在
边上过点
作
交
于点
,作
交
于点
.根据题意,请在图1中补全图形,并直接写出
与
的数量关系;
(2)如图2,若点
在
的延长线上,且
,
.请判断
与
的位置关系并说明理由;
(3)如图3,点
是
外部的一点,过点
作
交直线
于点
,作
交直线
于点
,请直接写出
与
的数量关系,并图3中补全图形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC与△CEF均为等腰直角三角形,∠ABC=∠CFE=90°,连接AE,点G是AE中点,连接BG和GF.
(1)如图1,当△CEF中E、F落在BC、AC边上时,探究FG与BG的关系;
(2)如图2,当△CEF中F落在BC边上时,探究FG与BG的关系.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知∠A+∠E+∠F+∠C=540°.
![]()
(1)试判断直线AB与CD的位置关系,并说明理由;
(2)如图2,∠PAB=3∠PAQ,∠PCD=3∠PCQ,试判断∠APC与∠AQC的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com