【题目】已知矩形ABCD,AB=6,BC=10,以BC所在直线为x轴,AB所在直线为y轴,建立如图所示的平面直角坐标系,在CD边上取一点E,将△ADE沿AE翻折,点D恰好落在BC边上的点F处.
(1)求线段EF长;
(2)在平面内找一点G,
①使得以A、B、F、G为顶点的四边形是平行四边形,请直接写出点G的坐标;
②如图2,将图1翻折后的矩形沿y轴正半轴向上平移m个单位,若四边形AOGF为菱形,请求出m的值并写出点G的坐标.
【答案】(1)EF=;(2)①点G的坐标为(-8,6)或(8,6)或(8,-6);②m=4,点G的坐标是(8,-6).
【解析】
(1)由矩形的性质得到AD=BC=10,CD=AB=6,由折叠得AF=AD=10,根据勾股定理求出OF=8,得到FC=OC-OF=2,再利用勾股定理得到 ,即可求出EF;
(2)①分别以AB、AF、BF为平行四边形的对角线,根据平行四边形的性质得到点G的坐标;
②根据菱形的性质求出AO=AF=10,由此得到平移的距离m=4, 设FG交x轴于点H,证明四边形OBFH是矩形,得到=OB=4,OH=BF=8,求出HG=10-4=6,由此求出点G的坐标是(8,-6).
(1)∵四边形ABCD是矩形,
∴AD=BC=10,CD=AB=6,
由折叠得AF=AD=10,
∵∠AOC=90°,AO=6,
∴OF=8,
∴FC=OC-OF=2,
在Rt△EFC中, ,
∴,
解得EF=;
(2)①当AB为平行四边形的对角线时,AG=BF且AG∥BF,∴点G的坐标为(-8,6);
当AF为平行四边形的对角线时,AG=BF且AG∥BF,∴点G的坐标为(8,6);
当BF为平行四边形的对角线时,FG=AB且FG∥AB,∴点G的坐标为(8,-6);
综上,点G的坐标为(-8,6)或(8,6)或(8,-6);
②∵四边形AOGF是菱形,
∴AO=AF=10,
∴矩形ABCD平移的距离m=AO-AB=10-6=4,即OB=4,
设FG交x轴于点H,
∵AO∥FG,BC∥x轴,
∴∠FBO=∠BOH=∠OHF=90°,
∴四边形OBFH是矩形,
∴FH=OB=4,OH=BF=8,
∴HG=10-4=6,
∴点G的坐标是(8,-6).
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为( )
A. ()2013B. ()2014C. ()2013D. ()2014
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的 是( )
A.只有①②B.只有①②③C.只有③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.
(1)时,求抛物线的解析式和BC的长;
(2)如图时,若AP⊥PC,求的值;
(3)是否存在实数,使,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10 x元(x为整数)。
(1)(2分)直接写出每天游客居住的房间数量y与x的函数关系式。
(2)(4分)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
(3)(4分)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人。问:这天宾馆入住的游客人数最少有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是⊙O外一动点,PA、PB、CD是⊙O的三条切线,C、D分别在PA、PB上,连接OC、OD.设∠P为x°,∠COD为y°,则y随x的函数关系图象为( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项:评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了________名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为________度;
(3)请将频数分布直方图补充完整;
(4)如果全市有8600名七年级学生,那么在试卷评讲课中,“独立思考”的七年级学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.
(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com