精英家教网 > 初中数学 > 题目详情

【题目】如图,图象(折线ABCDE)描述了一汽车在某一直路上行驶过程中汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,下列说法正确的是(  )

A.汽车共行驶了120千米

B.汽车在行驶途中停留了2小时

C.汽车在AB段的行驶速度与CD段的行驶速度相同

D.汽车自出发后3小时至4.5小时之间行驶的平均速度为80千米/

【答案】D

【解析】

根据函数图像,分析各点的含义,利用路程与时间的关系依次进行求解.

解:读图可得:A、汽车的最大位移为120千米,来回的路程为240千米,故错误;

BBC间的位移不变,其时间为21.50.5,故汽车在途中停留了0.5小时,故错误;

C、汽车在AB段的行驶速度为km/sCD段的行驶速度为80km/s,故C错误;

D、汽车返回时的速度是80千米/小时,故D正确;

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=﹣x2+x+x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点DDHx轴于点H,过点AAEACDH的延长线于点E.

(1)求线段DE的长度;

(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当CPF的周长最小时,MPF面积的最大值是多少;

(3)在(2)问的条件下,将得到的CFP沿直线AE平移得到C′F′P′,将C′F′P′沿C′P′翻折得到C′P′F″,记在平移过称中,直线F′P′x轴交于点K,则是否存在这样的点K,使得F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在直角三角形ABC中,∠BAC=90°,AB=AC,DBC的中点,EAC上一点,点GBE上,连接DG并延长交AEF,若∠FGE=45°.

(1)求证:BDBC=BGBE;

(2)求证:AG⊥BE;

(3)若EAC的中点,求EF:FD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx8x轴,y轴分别交于点AB,直线yx1与直线AB交于点C,与y轴交于点D

1)求点C的坐标.

2)求BDC的面积.

3)如图,Py轴正半轴上的一点,Q是直线AB上的一点,连接PQ

①若PQx轴,且点A关于直线PQ的对称点A恰好落在直线CD上,求PQ的长.

②若BDCBPQ全等(Q不与点C重合),请写出所有满足要求的点Q坐标(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.

如图所示,已知:⊙IABCBC边上的旁切圆,E、F分别是切点,ADIC于点D.

(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.

(2)设AB=AC=5,BC=6,如果DIEAEF的面积之比等于m,,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就学生体育活动兴趣爱好的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

1)在这次调查中,喜欢篮球项目的同学有   人,在扇形统计图中,乒乓球的百分比为   %,如果学校有800名学生,估计全校学生中有   人喜欢篮球项目.

2)请将条形统计图补充完整.

3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y= (x<0)的图象与直线y= x+m相交于点A和点B.过点AAEx轴于点E,过点BBFy轴于点F,P为线段AB上的一点,连接PE、PF.若PAEPBF的面积相等,且xP=﹣ ,xA﹣xB=﹣3,则k的值是(  )

A. ﹣5 B. C. ﹣2 D. ﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:

(1)在这次抽样调查中,一共调查了多少名学生?

(2)请把折线统计图(图1)补充完整;

(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;

(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.

查看答案和解析>>

同步练习册答案