精英家教网 > 初中数学 > 题目详情

【题目】在矩形ABCD中,边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(如图1).

(1)如图2,设折痕与边BC交于点O,连接,OP、OA.已知△OCP与△PDA的面积比为1:4,求边AB的长;
(2)动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN、CA,交于点F,过点M作ME⊥BP于点E.
①在图1中画出图形;
②在△OCP与△PDA的面积比为1:4不变的情况下,试问动点M、N在移动的过程中,线段EF的长度是否发生变化?请你说明理由.

【答案】
(1)

解:如图2,∵四边形ABCD是矩形,

∴∠C=∠D=90°,

∴∠1+∠3=90°,

∵由折叠可得∠APO=∠B=90°,

∴∠1+∠2=90°,

∴∠2=∠3,

又∵∠D=∠C,

∴△OCP∽△PDA,

∵△OCP与△PDA的面积比为1:4,

= = =

∴CP= AD=4,

设OP=x,则CO=8﹣x,

在Rt△PCO中,∠C=90°,

由勾股定理得 x2=(8﹣x)2+42

解得:x=5,

∴AB=AP=2OP=10,

∴边AB的长为10;


(2)

解:①作图如下:

②作MQ∥AN,交PB于点Q,如图1.

∵AP=AB,MQ∥AN,

∴∠APB=∠ABP,∠ABP=∠MQP.

∴∠APB=∠MQP.

∴MP=MQ.

∵MP=MQ,ME⊥PQ,

∴PE=EQ= PQ.

∵BN=PM,MP=MQ,

∴BN=QM.

∵MQ∥AN,

∴∠QMF=∠BNF.

在△MFQ和△NFB中,

∴△MFQ≌△NFB.

∴QF=BF.

∴QF= QB.

∴EF=EQ+QF= PQ+ QB= PB.

由(1)中的结论可得:

PC=4,BC=8,∠C=90°.

∴PB= =4

∴EF= PB=2

∴当点M、N在移动过程中,线段EF的长度不变,长度为2


【解析】(1)根据相似三角形△OCP∽△PDA的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长;(2)①根据题意作出图形;②由边相等常常联想到全等,但BN与PM所在的三角形并不全等,且这两条线段的位置很不协调,可通过作平行线构造全等,然后运用三角形全等及等腰三角形的性质即可推出EF是PB的一半,只需求出PB长就可以求出EF长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店,该店购进一种新上市的饰品进行了30天的试销售,购进价格为40元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=﹣2x+120(1≤x≤30,且x为整数);销售价格Q(元/件)与销售时间x(天)之间有如下关系:Q= x+50(1≤x≤30,且x为整数).
(1)试求出该商店日销售利润w(元)与销售时间x(天)之间的函数关系式;
(2)在这30天的试销售中,哪一天的日销售利润最大,哪一天的日销售利润最小?并分别求出这个最大利润和最小利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC,交⊙O于点D,交AC于点E,连接BD,BD交AC于点F,延长AC到点P,连接PB.

(1)若PF=PB,求证:PB是⊙O的切线;
(2)如果AB=10,BC=6,求CE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,DBC上任意一点,过点D分别向AB、AC引垂线,垂足分别为点E、F.

(1)如图①,当点DBC的什么位置时,DE=DF?并证明;

(2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?请写出所有的全等三角形(不必证明);

(3)如图②,过点CAB边上的高CG,请问DE、DF、CG的长之间存在怎样的等量关系?并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为4 ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.

(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣ 与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.

(一)尝试探究
如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.
(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为
(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案