精英家教网 > 初中数学 > 题目详情

【题目】某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示.

现有以下4个结论:

①快递车从甲地到乙地的速度为100千米/小时;

②甲、乙两地之间的距离为120千米;

③图中点B的坐标为(3.75,75)

④快递车从乙地返回时的速度为90千米/小时

以上结论正确的是________________

【答案】①③④

【解析】试题分析:设快递车从甲地到乙地的速度为x千米/时,则3x﹣60=120x=100.(故正确);

因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故错误);

因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=,纵坐标为120﹣60×=75,(故正确);

设快递车从乙地返回时的速度为y千米/时,则(y+60)(=75y=90,(故正确).

故答案为:①③④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将一幅三角板叠在一起,使直角的顶点重合于点O,则的值为(  )

A. 小于180° B. 等于180° C. 大于180° D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BO、CO分别平分∠ABC和∠ACB.计算:

(1)若∠A 60°,求∠BOC的度数;

(2)若∠A 100°, 则∠BOC的度数是多少?

(3)若∠A 120°, 则∠BOC的度数又是多少?

(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是O的直径,点C在O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.

(1)求证:PC是O的切线;
(2)求证:BC= AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC的纸片按如图所示的方式折叠,使点B落在边AC上,记为点B′,折叠痕为EF,已知AB=AC=8,BC=10,若以点B′、F、C为顶点的三角形与△ABC相似,那么BF的长度是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写出下列问题中的关系式,并指出其中的变量和常量.

1)直角三角形中一个锐角a与另一个锐角β之间的关系;

2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条不完整的数轴上从左到右有点ABC,其中AB=2BC=1,如图所示.设点ABC所对应数的和是p

1)若以B为原点,写出点AC所对应的数,并计算p的值;若以C为原点,p又是多少?

2)若原点O在图中数轴上点C的右边,且CO=28,求p

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5 千米的地方有一居民点B,A、B的直线距离是10 千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)

查看答案和解析>>

同步练习册答案