精英家教网 > 初中数学 > 题目详情

【题目】已知ABC为等边三角形,BDABC的高,延长BCE,使CE=CD=1,连接DE,则BE=___________BDE=_________

【答案】3 120°

【解析】

根据等腰三角形和30度角所对直角边等于斜边的一半,得到BC的长,进而得到BE的长,根据三角形外角性质求出∠E=CDE=30°,进而得出∠BDE的度数.

∵△ABC为等边三角形,∴∠ABC=ACB=60°,AB=BC

BD为高线,∴∠BDC=90°,∠DBCABC=30°,

BC=2DC=2,∴BE=BC+CE=2+1=3

CD=CE,∴∠E=CDE

∵∠E+CDE=ACB=60°,∴∠E=CDE=30°,

∴∠BDE=BDC+CDE=120°.

故答案为:3120°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,已知AEAB,AFAC,AE=AB,AF=AC.求证:(1)EC=BF;(2)ECBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,关于x的一元二次方程x2+(1﹣k)x﹣k=0 (其中k为常数).

(1)判断方程根的情况并说明理由;

(2)若﹣1<k<0,设方程的两根分别为m,n(m<n),求它的两个根mn;

(3)在(2)的条件下,若直线y=kx﹣1x轴交于点C,x轴上另两点A(m,0)、点B(n,0),试说明是否存在k的值,使这三点中相邻两点之间的距离相等?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个直角三角形ACB(ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.

(1)求证:CF=DG;

(2)求出FHG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中名学生每周上网的时间,算得这些学生平均每周上网时间为小时;小杰从全体名初二学生名单中随机抽取了名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为小时.小丽与小杰整理各自样本数据,如下表所示.

时间段(小时/周)

小丽抽样人数

小杰抽样人数

(每组可含最低值,不含最高值)

请根据上述信息,回答下列问题:

你认为哪位学生抽取的样本具有代表性?答:________;估计该校全体初二学生平均每周上网时间为________小时;

根据具有代表性的样本,把上图中的频数分布直方图补画完整;

在具有代表性的样本中,中位数所在的时间段是________小时/周;

专家建议每周上网小时以上(含小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,已知:在ABC中,BAC90°AB=AC,直线m经过点ABD直线m, CE直线m,垂足分别为点DE.证明:DE=BD+CE.

2 如图2,将1中的条件改为:在ABC中,AB=ACDAE三点都在直线m,并且有BDA=AEC=BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3拓展与应用:如图3DEDAE三点所在直线m上的两动点(DAE三点互不重合),FBAC平分线上的一点,ABFACF均为等边三角形,连接BDCE,BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;ac+b+1=0;abc>0;a﹣b+c>0.其中正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).

(1)求抛物线的解析式及顶点D的坐标;

(2)M是对称轴上的一个动点,当MA+MC的值最小时,求点M的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,内接于是直径,的切线的延长线于点于点,交于点,连接

判断的位置关系并说明理由;

的半径为,求的长.

查看答案和解析>>

同步练习册答案