19.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,求证:EF=BE+DF.
(1)思路梳理
∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADG=∠B=90°,∴∠FDG=∠ADG+∠ADC=180°,则点F、D、G共线.
根据SAS,易证△AFG≌△AFE,从而得EF=BE+DF;
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,但当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF,请给出证明;
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC应满足的等量关系,并写出推理过程.