精英家教网 > 初中数学 > 题目详情
9.计算:
(1)$\root{3}{64}$+$\sqrt{(-3)^{2}}$-$\root{3}{-1}$
(2)$\sqrt{49}$-$\root{3}{27}$+|1-$\sqrt{2}$|+$\sqrt{(1-\frac{5}{4})^{2}}$.

分析 (1)原式利用立方根,二次根式性质计算即可得到结果;
(2)原式利用算术平方根,立方根,绝对值的代数意义,以及二次根式性质计算即可得到结果.

解答 解:(1)原式=4+3-(-1)=8;
(2)原式=7-3+$\sqrt{2}$-1+$\frac{1}{4}$=3$\frac{1}{4}$+$\sqrt{2}$.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.若不等式(a-1)x≤-3的解集为x≥$\frac{3}{1-a}$,则a的取值范围是(  )
A.a>1B.a<1C.a>0D.a≤1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)$\frac{2}{{\sqrt{2}-1}}+\sqrt{18}-4\sqrt{\frac{1}{2}}$
(2)$(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})-{(\sqrt{3}-\sqrt{2})^2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知,三个实数a,b,c在数轴上的点如图所示,|a-b|+|c-a|-|c+b|的值可能是(  )
A.2aB.2bC.2cD.-2a

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.不等式5x+14≥0的所有负整数解的和是-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列各式中最简二次根式为(  )
A.$\sqrt{3}$B.$\sqrt{{x}^{2}}$C.$\sqrt{0.7}$D.$\sqrt{\frac{1}{3}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1所示,已知函数y=$\frac{6}{x}$(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0).动点M是y轴正半轴上点B上方的点.动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q.连接AQ,取AQ的中点C.
(1)如图2,连接BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2$\sqrt{3}$,求此时P点的坐标;
(3)在(2)的条件下,在平面直角坐标系中是否存在点S,使得以点D、Q、N、S为顶点的四边形为平行四边
形?如果存在,请直接写出所有的点S的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.对于⊙P及一个矩形给出如下定义:如果⊙P上存在到此矩形四个顶点距离都相等的点,那么称⊙P是该矩形的“等距圆”.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A的坐标为($\sqrt{3}$,2),顶点C、D在x轴上,且OC=OD.
(1)当⊙P的半径为4时,
①在P1(0,-3),P2(2$\sqrt{3}$,3),P3(-2$\sqrt{3}$,1)中可以成为矩形ABCD的“等距圆”的圆心的是P1(0,-3),P2(2$\sqrt{3}$,3);
②如果点P在直线$y=-\frac{\sqrt{3}}{3}x+1$上,且⊙P是矩形ABCD的“等距圆”,求点P的坐标;
(2)已知点P在y上,且⊙P是矩形ABCD的“等距圆”,如果⊙P与直线AD没有公共点,直接写出点P的纵坐标m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数:“i“,使其满足i2=-1(即方程x2=-1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1.从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1,那么,i+i2+i3+i4+…+i2012+i2013的值为(  )
A.0B.1C.-1D.i

查看答案和解析>>

同步练习册答案