【题目】如图,在□ABCD中,对角线AC,BD交于点O,过点O作EO⊥BD,交BA延长线于点E,交AD于点F,若EF=OF,∠CBD=30°,BD=.求AF的长.
【答案】2
【解析】试题分析:方法一,由平行四边形的性质得OD=,解Rt△ODF,求出OF和FD的长. 过O作OG∥AB,交AD于点G,易证△AEF∽△GOF,从而得到AF=GF.然后根据 列方程求解.
方法二,由△ODF≌△OHB可知,OH=OF,从而得到,再由△EAF∽△EBH可得;解直角三角形Rt△BOH,求出BH的长,代入比例式求出AF的长.
解:方法一:
∵□ABCD,∴AD∥BC,OD=BD=.
∵∠CBD=30°,∴∠ADB=30°.
∵EO⊥BD于O,∴∠DOF=90°.
在Rt△ODF中,tan30°=,∴OF=3.∴FD=6.
过O作OG∥AB,交AD于点G,∴△AEF∽△GOF,∴ .
∵EF=OF,∴AF=GF.
∵O是BD中点,∴G是AD中点.
设AF=GF=x,则AD=6+x,∴AG= .
解得x=2,∴AF=2.
方法二:延长EF交BC于H.
由△ODF≌△OHB可知,OH=OF.
∵AD∥BC,∴△EAF∽△EBH,∴ .
∵EF=OF,∴ .
由方法一的方法,可求BH=6,∴AF=2.
科目:初中数学 来源: 题型:
【题目】如图,在ABC中,高AD、BE相交于点O,AE=BE,BC=5,且BD=CD.
(1)①求证:△AOE≌△BCE;②求线段AO的长.
(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出t相应的的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在纸面上有一数轴(如图1),折叠纸面.
(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 表示的点重合;
(2)若﹣2表示的点与8表示的点重合,回答以下问题:
①16表示的点与 表示的点重合;
②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是 、 .
(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作一个角等于30°”的尺规作图过程.
作法:如图,(1)作射线AD;
(2)在射线AD上任意取一点O(点O不与点A重合);
(3)以点O为圆心,OA为半径作⊙O,交射线AD于点B;
(4)以点B为圆心,OB为半径作弧,交⊙O于点C;
(5)作射线AC.
∠DAC即为所求作的30°角.
请回答:该尺规作图的依据是_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线EF分别与直线AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为O,∠AOP=30°。
(1)若∠CME=120°,问AB和CD平行吗?为什么?
(2)若直线AB∥CD,求∠EMD的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C是以AB为直径的⊙O上一动点,过点C作⊙O直径CD,过点B作BE⊥CD于点E.已知AB=6cm,设弦AC的长为xcm,B,E两点间的距离为ycm(当点C与点A或点B重合时,y的值为0).
小冬根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小冬的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)在(2)的条件下,当函数图象与直线相交时(原点除外),∠BAC的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数的顶点为点D.
(1)求点D的坐标(用含m的代数式表示);
(2)求函数的图象与x轴的交点坐标;
(3)若函数的图象在直线y=m的上方,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )
A. 从D点出发,沿弧DA→弧AM→线段BM→线段BC
B. 从B点出发,沿线段BC→线段CN→弧ND→弧DA
C. 从A点出发,沿弧AM→线段BM→线段BC→线段CN
D. 从C点出发,沿线段CN→弧ND→弧DA→线段AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数的图像与函数()的图像相交于点,并与轴交于点.点是线段上一点,与的面积比为3:7.
(1)_____,_____.
(2)求点的坐标;
(3)若将绕点逆时针旋转,得到,其中点落在轴负半轴上,判断点是否落在函数()的图像上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com