【题目】如图,已知直线与抛物线: 相交于和点两点.
⑴求抛物线的函数表达式;
⑵若点是位于直线上方抛物线上的一动点,以为相邻两边作平行四边形,当平行四边形的面积最大时,求此时四边形的面积及点的坐标;
⑶在抛物线的对称轴上是否存在定点,使抛物线上任意一点到点的距离等于到直线的距离,若存在,求出定点的坐标;若不存在,请说明理由.
【答案】⑴;⑵当 ,□MANB=△= ,此时;⑶存在. 当时,无论取任何实数,均有. 理由见解析.
【解析】
(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;
(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,-a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;
(3)如图2,分别过点B,C作直线y=的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.
(1)由题意把点(-1,0)、(2,3)代入y=ax2+2x+c,
得,,
解得a=-1,c=3,
∴此抛物线C函数表达式为:y=-x2+2x+3;
(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,
将点(-1,0)、(2,3)代入y=kx+b中,
得,,
解得,k=1,b=1,
∴yAB=x+1,
设点M(a,-a2+2a+3),则K(a,a+1),
则MK=-a2+2a+3-(a+1)
=-(a-)2+,
根据二次函数的性质可知,当a=时,MK有最大长度,
∴S△AMB最大=S△AMK+S△BMK
=MKAH+MK(xB-xH)
=MK(xB-xA)
=××3
=,
∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,
S最大=2S△AMB最大=2×=,M(,);
(3)存在点F,
∵y=-x2+2x+3
=-(x-1)2+4,
∴对称轴为直线x=1,
当y=0时,x1=-1,x2=3,
∴抛物线与点x轴正半轴交于点C(3,0),
如图2,分别过点B,C作直线y=的垂线,垂足为N,H,
抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,设F(1,a),连接BF,CF,
则BF=BN=-3=,CF=CH=,
由题意可列:,
解得,a=,
∴F(1,).
科目:初中数学 来源: 题型:
【题目】如图,为⊙的内接三角形,为⊙的直径,在线段上取点(不与端点重合),作,分别交、圆周于、,连接,已知.
(1)求证:为⊙的切线;
(2)已知,填空:
①当__________时,四边形是菱形;
②若,当__________时,为等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为.
如果图中的圆圈共有13层,请问:自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,……,则最底层最左边这个圆圈中的数是__________;自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,……,则所有圆圈中各数的绝对值之和为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点的坐标为,以点为圆心,以长为半径画弧,交直线于点,过点作轴,交直线于点,以为圆心,以长为半径画弧,交直线于点,过点作轴,交直线于点,以点为圆心,以长为半径画弧,交直线于点,过点作轴交直线于点,以点为圆心,以长为半径面弧,交直线于点,…,按照如此规律进行下去,点的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的对称轴是直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有( )①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形中,点为对角线上一动点(点与点、不重合),连接,作交射线于点,过点作分别交,于点、,作射线交射线于点
(1)求证:;
(2)当时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:
课题 | 测量河流宽度 | ||
测量工具 | 测量角度的仪器,皮尺等 | ||
测量小组 | 第一小组 | 第二小组 | 第三小组 |
测量方案示意图 | |||
说明 | 点B,C在点A的正东方向 | 点B,D在点A的正东方向 | 点B在点A的正东方向,点C在点A的正西方向. |
测量数据 | BC=60m, ∠ABH=70°, ∠ACH=35°. | BD=20m, ∠ABH=70°, ∠BCD=35°. | BC=101m, ∠ABH=70°, ∠ACH=35°. |
(1)哪个小组的数据无法计算出河宽?
(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组建了书法、音乐、美术、舞蹈、演讲5个社团,随机调查了部分学生.被调查学生每人都参加且只参加了其中一个社团活动,并将调查结果制成了如图两幅不完整的统计图,在扇形统计图中,“音乐”所对应的扇形圆心角度数是( )度.
A.25%B.25C.60D.90
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com