精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.

(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:将点A、B坐标代入抛物线解析式,得:

,解得

∴抛物线的解析式为:y=﹣x2+4x+5


(2)

解:∵点P的横坐标为m,

∴P(m,﹣m2+4m+5),E(m,﹣ m+3),F(m,0).

∴PE=|yP﹣yE|=|(﹣m2+4m+5)﹣(﹣ m+3)|=|﹣m2+ m+2|,

EF=|yE﹣yF|=|(﹣ m+3)﹣0|=|﹣ m+3|.

由题意,PE=5EF,即:|﹣m2+ m+2|=5|﹣ m+3|=| m+15|

①若﹣m2+ m+2= m+15,整理得:2m2﹣17m+26=0,

解得:m=2或m=

②若﹣m2+ m+2=﹣( m+15),整理得:m2﹣m﹣17=0,

解得:m= 或m=

由题意,m的取值范围为:﹣1<m<5,故m= 、m= 这两个解均舍去.

∴m=2或m=


(3)

解:方法一:假设存在.

作出示意图如下:

∵点E、E′关于直线PC对称,

∴∠1=∠2,CE=CE′,PE=PE′.

∵PE平行于y轴,∴∠1=∠3,

∴∠2=∠3,∴PE=CE,

∴PE=CE=PE′=CE′,即四边形PECE′是菱形.

当四边形PECE′是菱形存在时,

由直线CD解析式y=﹣ x+3,可得OD=4,OC=3,由勾股定理得CD=5.

过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,

,即 ,解得CE= |m|,

∴PE=CE= |m|,又由(2)可知:PE=|﹣m2+ m+2|

∴|﹣m2+ m+2|= |m|.

①若﹣m2+ m+2= m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣

②若﹣m2+ m+2=﹣ m,整理得:m2﹣6m﹣2=0,解得m1=3+ ,m2=3﹣

由题意,m的取值范围为:﹣1<m<5,故m=3+ 这个解舍去.

当四边形PECE′是菱形这一条件不存在时,

此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,

∴P(0,5)

综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣ ),(4,5),(3﹣ ,2 ﹣3)

方法二:

若E(不与C重合时)关于直线PC的对称点E′在y轴上,则直线CD与直线CE′关于PC轴对称.

∴点D关于直线PC的对称点D′也在y轴上,

∴DD′⊥CP,∵y=﹣ x+3,

∴D(4,0),CD=5,

∵OC=3,

∴OD′=8或OD′=2,

①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),

∵PC⊥DD′,∴KPC×KDD′=﹣1,

∴2t2﹣7t﹣4=0,

∴t1=4,t2=﹣

②当OD′=2时,D′(0,﹣2),

设P(t,﹣t2+4t+5),

∵PC⊥DD′,∴KPC×KDD′=﹣1,

=﹣1,

∴t1span>=3+ ,t2=3﹣

∵点P是x轴上方的抛物线上一动点,

∴﹣1<t<5,

∴点P的坐标为(﹣ ),(4,5),(3﹣ ,2 ﹣3).

若点E与C重合时,P(0,5)也符合题意.

综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣ ),(4,5),(3﹣ ,2 ﹣3)


【解析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=∠5,延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF、CF.
(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);
(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC= ,求此时线段CF的长(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=ax+by=bx+a的图象在同一坐标系内的大致位置正确的是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y= (k>0)经过点D,交BC于点E.

(1)求双曲线的解析式;
(2)求四边形ODBE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定向越野作为一种新兴的运动项目,深受人们的喜爱. 这种定向运动是利用地图和指北针到访地图上所指示的各个点标,以最短时间按序到达所有点标者为胜. 下面是我区某校进行定向越野活动中,中年男子组的成绩(单位:分:秒).

9:01 14:45 9:46 19:22 11:20 18:47 11:40 12:32 11:52 13:45

22:27 15:00 17:30 13:22 18:34 10:45 19:24 16:26 21:33 15:31

19:50 14:27 15:55 16:07 20:43 12:13 21:41 14:57 11:39 12:45

12:57 15:31 13:20 14:50 14:57 9:41 12:13 14:27 12:25 12:38

例如用时最少的赵老师的成绩为9:01,表示赵老师的成绩为9分1.

以下是根据某校进行定向越野活动中,中年男子组的成绩中的数据,绘制的统计图表的一部分.

某校中年男子定向越野成绩分段统计表

分组/分

频数

频率

9≤x<11

4

0.1

11≤x<13

b

0.275

13≤x<15

9

0.225

15≤x<17

6

d

17≤x<19

3

0.075

19≤x<21

4

0.1

21≤x<23

3

0.075

合计

a

c

(1)这组数据的极差是____________;

(2)上表中的a =____________ ,b =____________ , c =____________, d =____________;

(3)补全频数分布直方图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A、B两点,AB=5,OA:OB =3:4.

(1)求直线l的表达式;

(2)点P轴上的点,点Q是第一象限内的点.若以A、B、P、Q为顶点的四边形是菱形,请直接写出Q点的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为直线AB上一点,∠COE=90°,OF平分∠AOE.

(1)若∠COF=40°,求∠BOE的度数.

(2)若∠COF=α(0°<α<90°),则∠BOE=______(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是 =610千克, =608千克,亩产量的方差分别是S2=29.6,S2=2.7.则关于两种小麦推广种植的合理决策是(
A.甲的平均亩产量较高,应推广甲
B.甲、乙的平均亩产量相差不多,均可推广
C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲
D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙

查看答案和解析>>

同步练习册答案