【题目】已知关于的方程有两个实数根、.
(1)求实数k的取值范围;
(2)若、满足,求实数的值.
【答案】(1)k≤;(2)﹣2.
【解析】试题分析:(1)根据方程的系数结合根的判别式,即可得出△=-4k+5≥0,解之即可得出实数k的取值范围;
(2)由根与系数的关系可得x1+x2=1-2k、x1x2=-1,将其代入x12+x22=(x1+x2)2-2x1x2=16+x1x2中,解之即可得出k的值.
试题解析:(1)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,
∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,
解得:k≤,
∴实数k的取值范围为k≤;
(2)∵关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2,
∴x1+x2=1﹣2k,x1x2=k2﹣1,
∵x12+x22=(x1+x2)2﹣2x1x2=16+x1x2,
∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0,
解得:k=﹣2或k=6(不符合题意,舍去),
∴实数k的值为﹣2.
科目:初中数学 来源: 题型:
【题目】在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG = 2BE. 如果设BE的长为x(单位:m),绿地AEFG的面积为y(单位:m2),那么y与x的函数的表达式为__________________;当BE =______m时,绿地AEFG的面积最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:
收费出口编号 | |||||
通过小客车数量(辆) | 260 | 330 | 300 | 360 | 240 |
在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:
(1)他们都行驶了18千米;
(2)甲在途中停留了0.5小时;
(3)乙比甲晚出发了0.5小时;
(4)相遇后,甲的速度小于乙的速度;
(5)甲、乙两人同时到达目的地
其中符合图象描述的说法有( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,平分,交于点且,延长与的延长线相交于点,连接、.下列结论:①;②是等边三角形;③;④;⑤;其中正确的有( )
A.个B.个
C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数填入相应的集合中:+2,3,0,3,1.414,17,.
负数:{___…};正整数:{___…};整数:{___…};负分数:{___…};分数:{___…};有理数:{___…}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA,PB,AB,已知∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设A=÷(a﹣).
(1)化简A;
(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com