精英家教网 > 初中数学 > 题目详情

【题目】如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM.

(1)在图1中,当∠ABC=ADC=90°时,求证:AD+AB=AC

(2)若把(1)中的条件ABC=ADC=90°”改为∠ABC+ADC=180°,其他条件不变,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(图1) (图2)

【答案】(1)证明见解析;(2)(2)结论仍成立.理由见解析

【解析】试题分析:(1)由题中条件可得,∠DCA=∠BCA=30°,在直角三角形中可得AC=2AD,AC=2AB,所以AD+AB=AC.

(2)在AN上截取AE=AC,连接CE,可得△CAE为等边三角形,进而可得△ADC≌△EBC,即DC=BC,DA=BE,进而结论得证.

试题解析:(1)证明:∵∠MAN=120°,AC平分∠MAN,

∴∠DAC=∠BAC=60°

∵∠ABC=∠ADC=90°,

∴∠DCA=∠BCA=30°,

Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°

∴AC=2AD,AC=2AB,

∴AD+AB=AC;

(2)解:结论AD+AB=AC成立.

理由如下:在AN上截取AE=AC,连接CE,

∵∠BAC=60°,

∴△CAE为等边三角形,

∴AC=CE,∠AEC=60°,

∵∠DAC=60°,

∴∠DAC=∠AEC,

∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,

∴∠ADC=∠EBC,

∴△ADC≌△EBC,

∴DC=BC,DA=BE,

∴AD+AB=AB+BE=AE,

∴AD+AB=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)
(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是
(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是
(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3 ①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?
②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算中,结果正确的是(
A.(a﹣b)2=a2﹣b2
B.(﹣2)3=8
C.
D.6a2÷2a2=3a2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a<0则-3a+2____0.(“>”“=”“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,ADBC,DCBC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点E处,若∠EBC=20°,则∠EBD的度数为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ACB=90°A=30°,CD为ABC的中线,作COAB于O,点E在CO延长线上,DE=AD,连接BE、DE.

(1)求证:四边形BCDE为菱形;

(2)把ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是( )

A. x2+x2=x4 B. (x-y)2=x2-y2

C. (x2y)3=x6y D. (-x)2x3=x5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式: ,并将解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(4,﹣1).

(1)作出ABC关于y轴对称的,并写出的坐标;

(2)作出ABC绕点O逆时针旋转90°后得到的,并求出所经过的路径长.

查看答案和解析>>

同步练习册答案