【题目】计算:
(1)(x+1)2﹣x(1﹣x)﹣2x2
(2) ÷( ﹣a﹣b)
【答案】
(1)解:原式=x2+2x+1﹣x+x2﹣2x2
=x+1;
(2)解:原式= ÷
= ×
= .
【解析】利用分式的混合运算法则、灵活运用平方差公式和完全平方公式解答即可.
【考点精析】掌握分式的混合运算和单项式乘多项式是解答本题的根本,需要知道运算的顺序:第一级运算是加法和减法;第二级运算是乘法和除法;第三级运算是乘方.如果一个式子里含有几级运算,那么先做第三级运算,再作第二级运算,最后再做第一级运算;如果有括号先做括号里面的运算.如顺口溜:"先三后二再做一,有了括号先做里."当有多层括号时,先算括号内的运算,从里向外{[(?)]};单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,不正确的是( )
A. 平方等于本身的数只有和 B. 正数的绝对值是它本身,负数的绝对值是它的相反数
C. 两个数的差为正数,至少其中有一个正数 D. 两个负数,绝对值大的负数反而小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4,
(1)求 k的值;
(2)利用图形直接写出不等式x>的解;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P,Q两点(P点在第一象限),若由点 A,B,P,Q为顶点组成的四边形面积为 24,求点 P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一艘载重480 t的船,容积是1050 m3,现有甲种货物450 m3,乙种货物350 t,而甲种货物每吨体积2.5 m3,乙种货物每立方米0.5 t.问两种货物是否都能装上船? 如果不能,请说明理由,并求出为了最大限度地利用船的载重量和容积,两种货物应各装多少吨.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.
(1)求直线AD的解析式;
(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;
(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是APQM面积的 时,求APQM面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣(2k+1)x+4(k﹣ )=0
(1)求证:无论k取何值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com