分析 根据坐标轴上点的坐标特征求一次函数y=kx+1的图象与坐标轴的交点坐标,然后根据三角形面积公式计算一次函数图象与两坐标轴围成的三角形的面积.
解答 解:当y=0时,kx+1=0,解得x=-$\frac{1}{k}$,则一次函数y=kx+1与x轴的交点坐标为(-$\frac{1}{k}$,0);
当x=0时,y=kx+1=1,则一次函数y=kx+1与y轴的交点坐标为(0,1),
所以一次函数与两轴的交点坐标是(-$\frac{1}{k}$,0)、(0,1),
所以一次函数与两坐标轴围成的三角形的面积=$\frac{1}{2}$×1×|-$\frac{1}{k}$|=$\frac{1}{2|k|}$.
故答案为(-$\frac{1}{k}$,0);(0,1);(-$\frac{1}{k}$,0)、(0,1);$\frac{1}{2|k|}$.
点评 本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-$\frac{b}{k}$,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com