3£®ÈçͼÔÚÊýÖáÉÏAµã±íʾÊýa£¬Bµã±íʾÊýb£¬a¡¢bÂú×ã|a+2|+|b-4|=0£®
£¨1£©µãA±íʾµÄÊýΪ2£»µãB±íʾµÄÊýΪ-4£»
£¨2£©Ò»Ð¡Çò¼×´ÓµãA´¦ÒÔ1¸öµ¥Î»/ÃëµÄËÙ¶ÈÏò×óÔ˶¯£»Í¬Ê±ÁíһСÇòÒÒ´ÓµãB´¦ÒÔ2¸öµ¥Î»/ÃëµÄËÙ¶ÈÒ²Ïò×óÔ˶¯£¬ÉèÔ˶¯µÄʱ¼äΪt£¨Ã룩£¬
¢Ùµ±t=1ʱ£¬¼×СÇòµ½Ô­µãµÄ¾àÀëΪ3£»ÒÒСÇòµ½Ô­µãµÄ¾àÀëΪ2£»µ±t=3ʱ£¬¼×СÇòµ½Ô­µãµÄ¾àÀëΪ5£»ÒÒСÇòµ½Ô­µãµÄ¾àÀëΪ2£»
¢ÚÊÔ̽¾¿£º¼×£¬ÒÒÁ½Ð¡Çòµ½Ô­µãµÄ¾àÀë¿ÉÄÜÏàµÈÂð£¿Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®ÈôÄÜ£¬ÇëÇó³ö¼×£¬ÒÒÁ½Ð¡Çòµ½Ô­µãµÄ¾àÀëÏàµÈʱ¾­ÀúµÄʱ¼ä£®

·ÖÎö £¨1£©¸ù¾Ý·Ç¸ºÊýµÄÐÔÖÊÇóµÃa=-2£¬b=4£»
£¨2£©¢Ù¼×Çòµ½Ô­µãµÄ¾àÀë=¼×ÇòÔ˶¯µÄ·³Ì+OAµÄ³¤£¬ÒÒÇòµ½Ô­µãµÄ¾àÀë·ÖÁ½ÖÖÇé¿ö£º£¨¢ñ£©ÒÒÇò´ÓµãB´¦¿ªÊ¼Ïò×óÔ˶¯£¬Ò»Ö±µ½Ô­µãO£¬´ËʱOBµÄ³¤¶È-ÒÒÇòÔ˶¯µÄ·³Ì¼´ÎªÒÒÇòµ½Ô­µãµÄ¾àÀ룻£¨¢ò£©ÒÒÇò´ÓÔ­µãO´¦¿ªÊ¼ÏòÓÒÔ˶¯£¬´ËʱÒÒÇòÔ˶¯µÄ·³Ì-OBµÄ³¤¶È¼´ÎªÒÒÇòµ½Ô­µãµÄ¾àÀ룻
¢Ú·ÖÁ½ÖÖÇé¿ö£º£¨¢ñ£©0£¼t¡Ü2£¬£¨¢ò£©t£¾2£¬¸ù¾Ý¼×¡¢ÒÒÁ½Ð¡Çòµ½Ô­µãµÄ¾àÀëÏàµÈÁгö¹ØÓÚtµÄ·½³Ì£¬½â·½³Ì¼´¿É£®

½â´ð ½â£º£¨1£©¡ß|a+2|+|b-4|=0£¬
¡àa+2=0£¬b-4=0£¬
½âµÃ£ºa=-2£¬b=4£¬
¡àµãA±íʾµÄÊýΪ-2£¬µãB±íʾµÄÊýΪ4£®
£¨2£©¢Ùµ±t=1ʱ£¬¼×СÇòµ½Ô­µãµÄ¾àÀëΪ2+1=3£»ÒÒСÇòµ½Ô­µãµÄ¾àÀëΪ4-2=2£»µ±t=3ʱ£¬¼×СÇòµ½Ô­µãµÄ¾àÀëΪ2+3=5£»ÒÒСÇòµ½Ô­µãµÄ¾àÀëΪ2¡Á3-4=2£®
¢Úµ±0£¼t¡Ü2ʱ£¬µÃt+2=4-2t£¬
½âµÃt=$\frac{2}{3}$£»
µ±t£¾2ʱ£¬µÃt+2=2t-4£¬
½âµÃt=6£®
¹Êµ±t=$\frac{2}{3}$Ãë»òt=6Ãëʱ£¬¼×ÒÒÁ½Ð¡Çòµ½Ô­µãµÄ¾àÀëÏàµÈ£®
¹Ê´ð°¸Îª£º£¨1£©-2£¬4    £¨2£©¢Ù3£¬2£»5£¬2£®

µãÆÀ ±¾Ì⿼²éÁ˷ǸºÊýµÄÐÔÖÊ£¬Ò»ÔªÒ»´Î·½³ÌµÄÔËÓã¬ÒÔ¼°ÊýÖᣬÁ½µã¼äµÄ¾àÀë£¬ÉøÍ¸·ÖÀàÌÖÂÛ˼Ïë¡¢·½³Ì˼Ïë¼°ÊýÐνáºÏ˼ÏëÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®³ö×⳵˾»úÕÅʦ¸µ11ÔÂ1ÈÕÕâÒ»ÌìÉÏÎçµÄÓªÔËÈ«ÔÚÏÃÃÅ»·µºÂ·ÉϽøÐУ®Èç¹û¹æ¶¨£ºË³Ê±Õë·½ÏòΪÕý£¬ÄæÊ±Õë·½ÏòΪ¸º£¬ÄÇôËûÕâÌìÉÏÎçÀ­ÁËÎåλ³Ë¿ÍËùÐгµµÄÀï³ÌÈçÏ£º£¨µ¥Î»£ºÇ§Ã×£©+8£¬-6£¬+3£¬-7£¬+2
£¨1£©½«×îºóÒ»Ãû³Ë¿ÍË͵½Ä¿µÄµØÊ±£¬ÕÅʦ¸µ¾à³ö³µµØµãµÄλÖÃÈçºÎ£¿
£¨2£©ÈôÆû³µºÄÓÍΪaÉý/ǧÃ×£¬ÄÇôÕâÌìÉÏÎçÆû³µ¹²ºÄÓͶàÉÙÉý£¿
£¨3£©Èç¹û³ö×â³µµÄÊշѱê×¼ÊÇ£ºÆð²½¼Û10Ôª£¬3ǧÃ׺óÿǧÃ×¼Û2Ôª£¬ÎÊ£ºÕÅʦ¸µÕâÌìÉÏÎçµÄÊÕÈëÒ»¹²ÊǶàÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÒÑÖªÊýÖáÉϵãA±íʾµÄÊýΪ-7£¬µãB±íʾµÄÊýΪ5£¬µãCµ½µãA£¬µãBµÄ¾àÀëÏàµÈ£¬¶¯µãP´ÓµãA³ö·¢£¬ÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØÊýÖáÏòÓÒÔÈËÙÔ˶¯£¬ÉèÔ˶¯µÄʱ¼äΪt£¨t£¾0£©Ã룮
£¨1£©µãC±íʾµÄÊýÊÇ-1£»
£¨2£©Çóµ±tµÈÓÚ¶àÉÙÃëʱ£¬µãPµ½´ïµãB´¦£»
£¨3£©µãP±íʾµÄÊýÊÇ-7+2t£¨Óú¬ÓÐtµÄ´úÊýʽ±íʾ£©£»
£¨4£©Çóµ±tµÈÓÚ¶àÉÙÃëʱ£¬PCÖ®¼äµÄ¾àÀëΪ2¸öµ¥Î»³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®£¨1£©Èçͼ¢Ù£¬»­³ö¡÷ABCÈÆµãBÄæÊ±ÕëÐýת90¡ãºóµÄ¡÷Al BC1£»
£¨2£©Èçͼ¢Ú£¬»­³ö¡÷ABCÈÆµãBÐýת180¡ãºóµÄ¡÷Al BC1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®°ÑÏÂÁи÷ÊýÌîÔÚÏàÓ¦µÄ´óÀ¨ºÅÀ
-£¨-2£©2£¬$\frac{22}{7}$£¬-0.101001£¬-|-2|£¬-0.$\stackrel{•}{1}\stackrel{•}{5}$£¬-$\frac{¦Ð}{2}$£¬0£¬$\frac{£¨-2£©^{3}}{3}$
¸ºÕûÊý¼¯ºÏ£º{                                                       ¡­}£»
¸º·ÖÊý¼¯ºÏ£º{                              ¡¡                      ¡­}£»
ÎÞÀíÊý¼¯ºÏ£º{                                                       ¡­}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏA£¾¡ÏB£®
£¨1£©ÓÃÖ±³ßºÍÔ²¹æ×÷ABµÄ´¹Ö±Æ½·ÖÏߣ¬´¹×ãΪD£¬½»BCÓÚE£»£¨²»Ð´×÷·¨£¬±£Áô×÷ͼºÛ¼££©
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÈôCE=DE£¬Çó¡ÏAµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª£ºa+$\frac{1}{a}$=5£¬Çó£ºa2+$\frac{1}{a^2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®¹Û²ìÏÂÁи÷ʽ£º$\sqrt{1+\frac{1}{3}}$=2$\sqrt{\frac{1}{3}}$£¬$\sqrt{2+\frac{1}{4}}$=3$\sqrt{\frac{1}{4}}$£¬$\sqrt{3+\frac{1}{5}}$=4$\sqrt{\frac{1}{5}}$£¬¡­ÇëÄã¸ù¾ÝÄãÕÒµ½µÄ¹æÂÉд³öµÚ6¸öµÈʽÊÇ$\sqrt{6+\frac{1}{8}}$=7$\sqrt{\frac{1}{8}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ1½«¾ØÐÎABCDÕÛµþ£¬Ê¹µÃ¶¥µãBÂäÔÚCD±ßÉϵÄPµã´¦£¬ÒÑÖªÕÛºÛÓë±ßBC½»ÓÚµãO£¬Á¬½áAP¡¢OP¡¢OA£®
£¨1£©ÇóÖ¤£º¡÷OCP¡×¡÷PDA£»
£¨2£©Èçͼ2£¬²ÁÈ¥ÕÛºÛAO¡¢Ïß¶ÎOP£¬Á¬½áBP£®¶¯µãMÔÚÏß¶ÎAPÉÏ£¨µãMÓëµãP¡¢A²»Öغϣ©£¬¶¯µãNÔÚÏß¶ÎABµÄÑÓ³¤ÏßÉÏ£¬ÇÒBN=PM£¬Á¬½áMN½»PBÓÚµãF£¬×÷ME¡ÍBPÓÚµãE£®Ì½¾¿£ºµ±µãM¡¢NÔÚÒÆ¶¯¹ý³ÌÖУ¬Ïß¶ÎEFÓëÏß¶ÎPBÓкÎÊýÁ¿¹ØÏµ£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸