精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,AB=BC,ABC=120°,点EAC上一点,连接BE,且∠BEC=50°D为点B关于直线AC的对称点,连接CD,将线段EB绕点E顺时针旋转40°得到线段EF,连接DF.

1)请你在下图中补全图形;

2)请写出∠EFD的大小,并说明理由;

3)连接CF,求证:DF=CF.

【答案】1)图见解析;(260°;理由见解析;(3)见解析.

【解析】

1)根据题意补全图形即可;

2)连接ED,根据对称性质可得:ED=EB,∠BEC=DEC=50°,再根据旋转性质可得:BE=EF,∠BEF=40°,从而得出EF=ED,∠FED=BEC+∠DEC-∠BEF=60°,即可判定△EFD为等边三角形,从而求出∠EFD的大小;

3)连接BF并延长交DCG,利用等边对等角求出∠BCA,根据对称的性质可得:CB=CD,∠BCG=2BAC=2DCA=60°,再求出∠CBG的度数,从而可判定BGCD,再根据30°所对的直角边是斜边的一半,即可证出GCD的中点,从而得到BG垂直平分CD,根据垂直平分线的性质即可证DF=CF.

补全图形如下所示:

2)连接ED

D为点B关于直线AC的对称点

ED=EB,∠BEC=DEC=50°

EB绕点E顺时针旋转40°得到线段EF

BE=EF,∠BEF=40°

EF=ED,∠FED=BEC+∠DEC-∠BEF=60°

∴△EFD为等边三角形

∴∠EFD=60°

3)连接BF并延长交DCG

AB=AC,∠ABC=120°

∴∠A=BCA=180°-∠ABC=30°

D为点B关于直线AC的对称点

CB=CD,∠BCG=2BAC=2DCA=60°

BE=EF,∠BEF=40°

∴∠EBF=EFB=180°-∠BEF=70°

EBC=180°-∠BEC-∠BCE=100°

∴∠CBG=EBC-∠EBF=30°

∴∠BGC=180°-∠CBG-∠BCG=90°

BGCDCG=BC=CD

GCD的中点

BG垂直平分CD

DF=CF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,B=C=90 ,M是BC的中点,DM平分ADC.

(1)若连接AM,则AM是否平分BAD?请你证明你的结论;

(2)线段DM与AM有怎样的位置关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BCAB=8,BC=6,点DAB的中点,点P在线段BC上以每秒2个单位的速度由点B向点C运动,同时点Q在线段CA上以每秒a个单位的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).

(1)用含t的代数式表示线段PC的长;

(2)若点PQ的运动速度相等,t=1时,BPDCQP是否全等,请说明理由.

(3)若点PQ的运动速度不相等,BPDCQP全等时,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=BC,ABC=30°BD平分∠ABCAC于点D,BC的垂直平分线EFBC于点E,BD于点F,BF=6,AC的长为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=AC,AD为中线,点PAD上一点,点QAC上一点,且∠BPQ+BAQ=180°.

1)若∠ABP=α,求∠PQC的度数(用含α的式子表示);

2)求证:BP=PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走一段距离时到点D处,侧得∠BDF=65°.若直线ABEF之间的距离为60米.

(1)设池塘两端的距离AB=x米,试用含x的代数式表示CD的长;

(2)当CD=100米时,求A、B两点的距离(计算结果精确到个位).(参考数据:sin45°≈0.71,cos65°≈0.42,tan65°≈2.14.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EFCEAB边于点F,以CEEF为邻边作矩形CEFG,作其对角线相交于点H.

(1)①如图2,当点F与点B重合时,CE=  ,CG=  

②如图3,当点EBD中点时,CE=  ,CG=  

(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;

(3)在图1,的值是否会发生改变?若不变,求出它的值;若改变,说明理由;

(4)在图1,设DE的长为x,矩形CEFG的面积为S,试求S关于x的函数关系式,并直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以BC为直径的⊙OAC于点E,过点EAB的垂线交AB于点F,交CB的延长线于点G,且∠ABG=2C.

(1)求证:EG是⊙O的切线;

(2)若tanC=,AC=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DBC边上一点,∠1=∠2=∠3ACAE.

求证:△ABC≌△ADE(填空)

证明:∵∠2+E+AFE=180° ( )

3+C+CFD=180°(同理)

又∵∠2=∠3( )

AFE=CFD( )

∴∠E=_________.

∵∠1=∠2(已知)

∴∠1+CAD=∠2+_______.

即∠BAC=DAE

在△ABC和△ADE

∴△ABC≌△ADE( ).

查看答案和解析>>

同步练习册答案