【题目】如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G,且∠ABG=2∠C.
(1)求证:EG是⊙O的切线;
(2)若tanC=,AC=8,求⊙O的半径.
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=与一次函数y=kx+b的图象交于点A(﹣2,1),B(1,n),交y轴于点C.
(1)求反比例函数与一次函数的解析式;
(2)求△AOB的面积;
(3)若点P是y轴上的点,请直接写出能使△PAC为等腰三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=BC,∠ABC=120°,点E是AC上一点,连接BE,且∠BEC=50°,D为点B关于直线AC的对称点,连接CD,将线段EB绕点E顺时针旋转40°得到线段EF,连接DF.
(1)请你在下图中补全图形;
(2)请写出∠EFD的大小,并说明理由;
(3)连接CF,求证:DF=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A. B.3 C.1 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.
(1)求证:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边长为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕D旋转,AD=4,DM=3.
(1)在旋转过程中,
①当A,D,M三点在同一直线上时,求AM的长;
②当A,D,M三点为同一直角三角形的顶点时,求AM的长;
(2)当摆动臂AD顺时针旋转,点D的位置由外的点D1转到其内的点D2处,连接D1D2如图2,此时∠AD2C=,CD2=,求BD2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=kx+b经过点A(5,0),B(1 ,4)
(1)求直线AB的解析式:
(2)若直线y=2x-4与直线AB相交于点C,求点C 的坐标
(3)结合图象,写出关于x的不等式2x- 4≥kx+b的解集,
(4)若直线y=2x-4与x轴交于点D.求△ACD的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电视台的娱乐节目《周末大放送》有这样的翻奖牌游戏:如图所示,将一个正方形均分成9等份,数字的背面写有祝福语或奖金数.游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是得奖还是得到温馨祝福.
正面:
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
反面:
祝你开心 | 万事如意 | 奖金1 000元 |
身体健康 | 心想事成 | 奖金500元 |
奖金100元 | 生活愉快 | 谢谢参与 |
请你完成下列问题:
(1)翻到奖金1 000元的概率是多少?
(2)翻不到奖金的概率是多少?
(3)一选手准备在奇数中选择一个数字,他获得奖金的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;
(2)设∠BAC= ,∠DCE= .
① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究与之间的数量关系,并证明你的结论;
② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时与之间的数量关系(不需证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com