【题目】如图,AB为半圆O的直径,以AO为直径作半圆M,C为OB的中点,D在半圆M上,且CD⊥MD,延长AD交半圆O于点E,且AB=4,则圆中阴影部分的面积为_____________.
【答案】
【解析】分析:
由CD为半圆M的切线,得到DC⊥MD,再由M为OA中点,C为OB中点,得到AM=MO=OC=BC=1,在Rt△DMC中,由DM=MO=OC=MC可得∠DCM=30°,则∠DMC=60°结合AM=DM,可得∠MAD=∠OEA=30°,在Rt△AOD中,利用30度所对的直角边等于斜边的一半,求出OD的长,利用勾股定理求出AD的长,确定出AE的长,同理求出DF与AC的长,确定出∠EOB的度数,最后由S阴影=S△AOE+S扇形OEB-S△ACD,求出即可.
详解:连接EO,DO,过点D作DF⊥AB于点F,
∵CD与半圆M相切,
∴CD⊥MD,
∵AB=4,O为AB的中点,M、C分别为AO、BO的中点,
∴AM=OM=OC=CB=1,
∵在Rt△MDC中,DM=MO=OC=MC,
∴∠DCM=30°,
∴∠DMC=60°,
∵AM=DM,
∴∠MAD=∠MDA=30°,
∵OA=OE,
∴∠E=∠A=30°,
∴∠EOB=∠E+∠A=60°,OD=OA=1,
∴AD=,
又∵OD⊥AE,
∴AE=2AD=,DF=AD=,
∴AF=,
∴AC=2AF=3,
∴S阴影=S△AOE+S扇形BOE-S△ACD
=AE·OD+-AC·DF
=+-
=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.①②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示为一种吸水拖把,它由吸水部分、拉手部分和主干部分构成.小明在拖地中发现,拉手部分在一拉一放的过程中,吸水部分弯曲的角度会发生变化。设拉手部分移动的距离为吸水部分弯曲所成的角度为,经测量发现:拉手部分每移动,吸水部分角度变化.请回答下列问题:
(1)求出关于的函数解析式;
(2)当吸水部分弯曲所成的角度为时,求拉手部分移动的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在半径为r的⊙O中,直径AB与弦CD相交于点P,CE⊥DA交DA的延长线于点E,连结AC.
(1)若的长为πr,求∠ACD的度数;
(2)若 ,tan∠DAB=3,CE-AE=3,求r的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.
(1)请用数状图或列表的方法求小莉去上海看世博会的概率;
(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形中,点沿着边按.方向运动,开始以每秒个单位匀速运动、秒后变为每秒个单位匀速运动,秒后恢复原速匀速运动,在运动过程中,的面积与运动时间的函数关系如图所示.
(1)直接写出长方形的长和宽;
(2)求,,的值;
(3)当点在边上时,直接写出与的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,逆命题是真命题的个数有( )
①个位上的数字为0的整数能被5整除;②全等三角形的对应边相等; ③若则; ④面积相等的两个三角形全等;⑤全等三角形的周长相等;⑥对顶角相等,
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=10cm,BC=5cm,线段PQ=AB,点P、Q分别在AC和与AC垂直的射线AM上移动,当AP= ________ 时,△ABC和△QPA全等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com