精英家教网 > 初中数学 > 题目详情

【题目】如图是一个正方体骰子的表面展开图,请根据要求回答问题:

(1)如果1点在上面,3点在左面,几点在前面?

(2)如果5点在下面,几点在上面?

【答案】(1)2;(2)2.

【解析】

(1)利用正方体及其表面展开图的特点可知“3“4相对,“5“2相对,“6“1相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面;
(2)根据(1)可得,如果5点在下面,那么2点在上面.

解:这是一个正方体的平面展开图,共有六个面,其中面“3和面“4相对,面“5和面“2相对,面“6和面“1相对,

(1)如果1点在上面,3点在左面,2点在前面,可知5点在后面;

(2)如果5点在下面,那么2点在上面.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B是线段PA的中点.将线段PB绕着点P顺时针方向旋转90°,得到线段PC,连结OB、BC.

(1)判断PBC的形状,并简要说明理由;

(2)当t0时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t的值?若不能,请说明理由;

(3)当t为何值时,AOP与APC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数 y=ax2﹣2ax+c(a>0)的图象与 x 轴的负半轴和正半轴分别交于 A、B 两点,与 y 轴交于点 C,它的顶点为 P,直线 CP 与过点B 且垂直于 x 轴的直线交于点 D,且 CP:PD=1:2,tan∠PDB=

(1) A、B 两点的坐标分别为 A( ); B( );

(2)求这个二次函数的解析式;

(3)在抛物线的对称轴上找一点M 使|MC﹣MB|的值最大,则点M 的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蘑菇石是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达蘑菇石”A点,蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DEBCBD=1800mDBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848sin80°≈0.9848cos29°≈0.8746cos80°≈0.1736

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,∠BAD是它的一个外角,OPBC交⊙O于点P,仅用无刻度的直尺按下列要求分别画图.(保留作图痕迹,不写作法)

(1)在图①中,画出△ABC的角平分线AF

(2)在图②中,画出△ABC的外角∠BAD的角平分线AG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2

(1)求y与x之间的函数关系式;

(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为△ABC的内心,延长AP交△ABC的外接圆OD,过DDEBC,交AC的延长线于E点.则直线DEO的位置关系是_____AB=4,AD=6,CE=3,则DE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2x1+x2=﹣ , x1x2=阅读下面应用韦达定理的过程:

若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2x12+x22的值.

解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0

由韦达定理可得,x1+x2=﹣=﹣=2,x1x2===﹣

x12+x22=(x1+x22﹣2x1x2

=22﹣2×(﹣

=5

然后解答下列问题:

(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1,x2不解方程,求x12+x22的值;

(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α22=4,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DBCB的延长线于G.

(1)求证:△CDB≌△BAG.

(2)如果四边形BFDE是菱形,那么四边形AGBD是什么特殊四边形?并证明你的结论.

查看答案和解析>>

同步练习册答案