精英家教网 > 初中数学 > 题目详情

【题目】韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2x1+x2=﹣ , x1x2=阅读下面应用韦达定理的过程:

若一元二次方程﹣2x2+4x+1=0的两根分别为x1、x2x12+x22的值.

解:该一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0

由韦达定理可得,x1+x2=﹣=﹣=2,x1x2===﹣

x12+x22=(x1+x22﹣2x1x2

=22﹣2×(﹣

=5

然后解答下列问题:

(1)设一元二次方程2x2+3x﹣1=0的两根分别为x1,x2不解方程,求x12+x22的值;

(2)若关于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的两根分别为α,β,且α22=4,求k的值.

【答案】(1)x12+x22=;(2)k的值为﹣1.

【解析】

(1)先根据根与系数的关系得到x1+x2=﹣, x1x2=﹣,再利用完全平方公式变形得到x12+x22=(x1+x22-2x1x2,然后利用整体代入的方法计算即可;
(2)根据一元二次方程(k-1)x2+(k2-1)x+(k-1)2=0的两根分别为α,β,求出两根之积和两根之和的关于k的表达式,再将α22=4变形,将表达式代入变形后的等式,解方程即可.

解:(1)∵一元二次方程的△=b2﹣4ac=32﹣4×2×(﹣1)=17>0,

由根与系数的关系得:x1+x2=﹣, x1x2=﹣

x12+x22=(x1+x22﹣2x1x2==

(2)由根与系数的关系知:=﹣k﹣1,=k﹣1,

α22=(α+β)2﹣2αβ=(k+1)2﹣2(k﹣1)=k2+3

k2+3=4,

k=±1,

k﹣1≠0

k≠1,

代入原方程:﹣2x2+4=0,

=32>0,

成立,

k的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在一只不透明的布袋中装有红球 3 个、黄球 1 个,这些球除颜色外都相同,均匀摇匀.

(1)从布袋中一次摸出 1 个球,计算摸出的球恰是黄球的概率;

(2)从布袋中一次摸出 2 个球,计算摸出的球恰是一红一黄的概率(画树状图列表的方法写出计算过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个正方体骰子的表面展开图,请根据要求回答问题:

(1)如果1点在上面,3点在左面,几点在前面?

(2)如果5点在下面,几点在上面?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,ABC为直角,以AB为直径作OAC于点D,点EBC中点,连结DEDB.

(1)求证:DEO相切;

(2)若C=30°,求BOD的度数;

(3)在(2)的条件下,若O半径为2, 求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD的边长为4cm,E,F分别为边DC,BC上的点,BF=1cm,CE=2cm,BE,DF相交于点G,求四边形CEGF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDAB相交,BAC=38°

1)如图①,若D为弧AB的中点,求∠ABC和∠ABD的大小;

2)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DPAC,求∠OCD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.

(1)若将这种水果每斤的售价降低x元,则每天的销售量是   斤(用含x的代数式表示);

(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆弧上.若正方形DEFG的面积为100,且△ABC的内切圆半径r=4,则半圆的直径AB=____

查看答案和解析>>

同步练习册答案