精英家教网 > 初中数学 > 题目详情
18.利用因式分解计算:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)

分析 根据平方差公式将每一个括号展开,然后利用分数的基本性质进行化简.

解答 解:原式=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)(1-$\frac{1}{4}$)(1+$\frac{1}{4}$)…(1-$\frac{1}{n}$)(1+$\frac{1}{n}$)
=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$×…$\frac{n-1}{n}$×$\frac{n+1}{n}$
=$\frac{1}{2}$×$\frac{n+1}{n}$
=$\frac{n+1}{2n}$

点评 本题考查平方差公式的应用,解题的关键是将各个括号利用平方差公式进行分解,本题属于中等题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.若x>y,则下列式子错误的是(  )
A.x+2>y+2B.-2x<-2yC.1-x>1-yD.$\frac{x}{2}>\frac{y}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,一段抛物线y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2
将C2绕A2旋转180°得到C3,交x轴于A3

如此进行下去,直至得C13.若点P(37,m)在第13段抛物线C13上,则m=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,利用四个全等的直角三角形拼成的“赵爽弦图”中,小正方形的面积是1,大正方形的面积是25,直角三角形中较大的锐角为β,那么tanβ=$\frac{4}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C,点B和点C的坐标分别为(3,0)(0,-3),抛物线的对称轴为x=1,D为抛物线 的顶点.
(1)求抛物线的解析式.
(2)抛物线的对称轴上是否存在一点P,使△PCD为等腰三角形?若存在,写出点P点的坐标,若不存在,说明理由.
(3)点E为线段BC上一动点,过点E作x轴的垂线,与抛物线交于点F,求四边形ACFB面积的最大值,以及此时点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G
(1)若∠ABE=∠C,BC=2$\sqrt{5}$,则AE=1;
(2)若点E为AD中点,求证:GE-FE=FD;
(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.直线l上一点与圆心O的距离恰好等于圆的半径,则直线l与⊙O的位置关系是(  )
A.相切B.相交C.相切或相交D.相离

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(-3,0),C(1,0),$\frac{BC}{AC}$=$\frac{3}{4}$,
(1)求直线AB的解析式;
(2)在x轴上确定一点D,连接DB,使得△ADB与△ABC相似,并求出点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请直接写出m的值;如不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知点P在△ABC内,若AP=CP,且AB>BC,则点P一定在(  )
A.边AC的垂直平分线上B.边AB的垂直平分线上
C.边BC的垂直平分线上D.边AC的高上

查看答案和解析>>

同步练习册答案