【题目】我们可以将任意三位数表示为(其中a、b、c 分别表示百位上的数字,十位上的数字和个位上的数字,且a0)显然,= 100a+10b+c;我们把形如和的两个三位数称为一对“姊妹数”(其中x、y、z是三个连续的自然数)如:123和321是一对“姊妹数”,789和987是一对“姊妹数”.
(1)一对“姊妹数”的和为1110,求这对“姊妹数”.
(2)如果用x表示百位数字,试说明:任意一对“姊妹数”的和能被37整除.
【答案】(1)456和654;(2)任意一对“姊妹数”的和能被37整除.
【解析】
(1)根据“姊妹数”的意义直接写出两对“姊妹数”,根据“姊妹数”的意义设出一个三位数,表示出它的“姊妹数”,求和,用1110建立方程求解,最后判断即可;
(2)表示出这对“姊妹数”,并且求和,写成37×6(x-1),判断6(x-1)是整数即可.
(1)设任意一对“姊妹数”中的一个三位数的十位数字为x,个位数字为(x1)百位数字为(x+1) (x为大于1小于9的整数),
则100(x+1)+10x+x-1=111x+99 ,
“姊妹数”为:100(x-1)+10x+1=111x-99,
和为:(111x+99)+(111x-99)=1110,
解之得,x=5
这对“姊妹数”为:456和654;
(2)由题意知:这个三位数百位数字为x(x为大于2小于9的整数),十位数字为x-1,个位数字为x-2,
则这个三位数为:100x+10(x-1)+(x-2)=111x-12,
其“姊妹数”为:100(x-2)+10(x-1)+x=111x-210,
和为:(111x-12)+(111x-210)=222x-222=222(x-1) =376(x-1),
因为(x-1)为整数,
376(x-1)能被37整除.
任意一对“姊妹数”的和能被37整除.
科目:初中数学 来源: 题型:
【题目】已知O是直线上的一点,∠AOB是直角,OE平分∠AOC
(1) 在图①中,若∠BOD=28°,求∠AOE的度数
(2) 将图①中的∠AOB绕顶点O顺时针旋转至图②的位置.若∠BOD=α,试用含α的式子表示∠AOE,并说明理由
(3) 继续旋转AOB至图③的位置,若∠BOD=α,其他条件不变,试将图形补充完整,求∠AOE的度数.(用含α的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工程队修建一条长1200米的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.
(1)求这个工程队原计划每天修建道路多少米?
(2)在这项工程中,如果要求提前2天完成任务,那么实际平均每天修建道路多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:
(1)这次活动一共调查了名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:
(1)若∠A=60°,则∠P= °;
(2)若∠A=40°,则∠P= °;
(3)若∠A=100°,则∠P= °;
(4)请你用数学表达式归纳∠A与∠P的关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:AD⊥CF;
(2)连接AF,试判断△ACF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在矩形ABCD中,AB=10 cm,BC=8 cm.点P从点A出发,沿A→B→C→D的路线运动,到点D停止;点Q从点D出发,沿D→C→B→A的路线运动,到点A停止.若点P、点Q同时出发,点P的速度为每秒1 cm,点Q的速度为每秒2 cm,a秒时,点P、点Q同时改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm.图②是点P出发x秒后△APD的面积S1(cm2)与时间x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与时间x(秒)的函数关系图象.
(1)参照图②,求a、 b及图②中c的值;
(2)求d的值;
(3)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后,y1、y2与出发后的运动时间x(秒)的函数关系式,并求出点P、点Q相遇时x的值;
(4)当点Q出发__ __秒时,点Q的运动路程为25 cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com