精英家教网 > 初中数学 > 题目详情

【题目】四边形是正方形,将线段绕点逆时针旋转,得到线段,连接,过点的延长线于,连接

1)依题意补全图1

2)直接写出的度数;

3)连接,用等式表示线段的数量关系,并证明.

【答案】1)见解析;(2;(3,理由见解析

【解析】

1)按照题中的表述画出图形即可;
2)由题意可知,CD=CE=CB,∠ECD=2α,∠ABC=BCD=CDA=DAB=90°,根据题中角度关系推理即可;
3)作AHAF,交BF的延长线于点H,先通过条件证明△HAB≌△FAD,可得HB=FDAH=AFHF=DE,∠H=45°,从而知道HFAF的数量关系,即可得线段AFDE的数量关系.

解:(1)补全图形,如图所示.

2

DFAB交于点G,如图所示:

由题意得,CD=CE=CB,∠ECD=2α,∠ABC=BCD=CDA=DAB=90°
∴∠EDC=90°-α,∠BCE=90°-2α
∴∠CBE=45°+α,∠ADF=α
∴∠ABE=45°-α
BFDE
∴∠BFD=90°
∵∠AGD=FGB
∴∠FBG=α
∴∠FBE=FEB=45°

3

证明:如图,作,交的延长线于点,设交于点

根据题意可知,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△OAB的边OBx轴的正半轴上,AOABM是边AB的中点,经过点M的反比例函数yk0x0)的图象与边OA交于点C,则的值为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,对角线ACBD相交于点OE是边AB上的一个动点(不与AB重合),连接EO并延长,交CD于点F,连接AFCE,下列四个结论中:

①对于动点E,四边形AECF始终是平行四边形;

②若∠ABC90°,则至少存在一个点E,使得四边形AECF是矩形;

③若ABAD,则至少存在一个点E,使得四边形AECF是菱形;

④若∠BAC45°,则至少存在一个点E,使得四边形AECF是正方形.

以上所有正确说法的序号是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax22ax

1)二次函数图象的对称轴是直线x   

2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;

3)若a0,对于二次函数图象上的两点Px1y1),Qx2y2),当tx1t+1x2≥3时,均满足y1y2,请结合函数图象,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先进制造业城市发展指数是反映一个城市先进制造水平的综合指数.对2019年我国先进制造业城市发展指数得分排名位居前列的30个城市的有关数据进行收集、整理、描述和分析.下面给出了部分信息:

a.先进制造业城市发展指数得分的频数分布直方图(数据分成6组:):

b.先进制造业城市发展指数得分在这一组的是:71.1 75.7 79.9

c30个城市的2019年快递业务量累计和先进制造业城市发展指数得分情况统计图:

d.北京的先进制造业城市发展指数得分为79.9

根据以上信息,回答下列问题:

1)在这30个城市中,北京的先进制造业城市发展指数排名第

2)在30个城市的快递业务量累计和先进制造业城市发展指数得分情况统计图中,包括北京在内的少数几个城市所对应的点位于虚线的上方.请在图中用“○”圈出代表北京的点;

3)在这30个城市中,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为_______亿件.(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 .(填写所有正确结论的序号)

【答案】①②③④.

【解析】

试题分析:△ABC是等边三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等边三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

EF=AE,所以△AEF是等边三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF 可判定△ABE≌△ACF,故①正确.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四边形ABDF是平行四边形,所以DF=AB=BC,故②正确.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF 可判定△BCE≌△FDC,所以S△BCE=S△FDC即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正确.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以==又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正确.

考点:三角形综合题.

型】填空
束】
19

【题目】先化简,再求值:(a+1-)÷(),其中a=2+.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB两个顶点在x轴上方,点C的坐标是(10),以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,得到△A'B'C',设点B的对应点B'的横坐标为2,则点B的横坐标为(  )

A.1B.C.2D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AB=ACAC交⊙O于点EBC交⊙O于点DFCE的中点,连接DF.则下列结论错误的是

A.A=ABEB.

C.BD=DCD.DF是⊙O的切线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC和△DEF是两个全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q

1)如图,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE

2)如图,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ

3)在(2)的条件下,BP=2CQ=9,则BC的长为_______

查看答案和解析>>

同步练习册答案