精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO=
12
,CO=BO,AB=3,则这条抛物线的函数解析式是
 
分析:根据∠ACO的正切值,可得出OA、OC的比例关系,由于CO=BO,也就求出了OA、OB的比例关系,然后可根据AB=3,求出OA、OB、OC的长,即可得出A、B、C三点坐标.进而可用待定系数法求出抛物线的解析式.
解答:解:∵tan∠ACO=
1
2

OA
OC
=
1
2

∴OC=2OA.
∵CO=BO,
∴BO=2AO.
∵AB=AO+BO=3,
∴AO=1,BO=2,CO=2,
∴A,B,C的坐标分别为(-1,0),(2,0),(0,-2).
把(-1,0),(0,-2)代入y=x2+bx+c得:
1-b+c=0
c=-2
,解得
b=-1
c=-2

∴抛物线的函数解析式是y=x2-x-2.
点评:本题主要考查了用待定系数法求二次函数解析式.根据∠ACO的三角函数值以及AB的长求出A、B、C三点坐标是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案