精英家教网 > 初中数学 > 题目详情
13.(1)$\frac{\sqrt{18}×\sqrt{2}}{\sqrt{3}}$
(2)${({\sqrt{2}+\sqrt{5}})^2}$
(3)$3\sqrt{8}-4\sqrt{32}$
(4)$({\sqrt{18}-\sqrt{\frac{1}{2}}})×\sqrt{8}$
(5)2-$\frac{{\sqrt{27}-\sqrt{12}}}{{\sqrt{3}}}$
(6)$\sqrt{32}-3\sqrt{\frac{1}{2}}+\sqrt{2}$
(7)$\sqrt{40}×\sqrt{10}-21$.

分析 (1)按照二次根式的运算法则进行计算,再化简,即可得出结论;
(2)将平方展开,再按照二次根式的运算法则进行计算,即可得出结论;
(3)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论;
(4)按照二次根式的运算法则进行计算,再化简,即可得出结论;
(5)按照二次根式的运算法则进行计算,再化简,即可得出结论;
(6)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论;
(7)将二次根式化简,化简后按照实数加减法的运算法则进行计算,即可得出结论.

解答 解:(1)$\frac{\sqrt{18}×\sqrt{2}}{\sqrt{3}}$=$\sqrt{18×2÷3}$=$\sqrt{12}$=2$\sqrt{3}$.
(2)${(\sqrt{2}+\sqrt{5})}^{2}$=${(\sqrt{2})}^{2}$+${(\sqrt{5})}^{2}$+2$\sqrt{2×5}$=7+2$\sqrt{10}$.
(3)3$\sqrt{8}$-4$\sqrt{32}$=6$\sqrt{2}$-16$\sqrt{2}$=-10$\sqrt{2}$.
(4)($\sqrt{18}$-$\sqrt{\frac{1}{2}}$)×$\sqrt{8}$=$\sqrt{18×8}$-$\sqrt{8÷2}$=12-2=10.
(5)2-$\frac{\sqrt{27}-\sqrt{12}}{\sqrt{3}}$=2-$\sqrt{27÷3}$+$\sqrt{12÷3}$=2-3+2=1.
(6)$\sqrt{32}$-3$\sqrt{\frac{1}{2}}$+$\sqrt{2}$=4$\sqrt{2}$-$\frac{3}{2}$$\sqrt{2}$+$\sqrt{2}$=$\frac{7}{2}$$\sqrt{2}$.
(7)$\sqrt{40}$×$\sqrt{10}$-21=$\sqrt{40×10}$-21=20-21=-1.

点评 本题考查了二次根式的混合运算,解题的关键是牢记二次根式的运算规则以及二次根式化简的方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.求值或化简:
(1)8.5-(-1.5)
(2)$\frac{1}{2}$×(-$\frac{4}{15}$)÷$\frac{2}{3}$
(3)3x2+3(2x-x2
(4)4ab-3b2-[(a2+b2)-(a2-b2)].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知,△ABC中,AB=AC,90°<∠BAC<120°,点P为射线CB上一点,连接PA.
(1)当∠APC=30°(如图a)时,求证:PC+PB=$\sqrt{3}$PA;
(2)当∠APC=45°(如图b)时,线段PC、PB、PA间的数量关系为PC-PB=$\sqrt{2}$PA;
(3)在(2)的条件下,作线段PC的垂直平分线,交PC于点D,交PA的延长线于点E,将射线AC绕点A逆时针旋转135°,交射线CE于点F,若PA=3$\sqrt{2}$,PB=1,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称△ABC是好三角形.

小丽发现好三角形折叠的次数不同∠B与∠C的数量关系就不同.并作出展示:
第一种好三角形:如图2,沿AD折叠一次,点B与点C重合;
第二种好三角形:如图3,沿着AB1、A1B2经过两次折叠.
(1)小丽展示的第一种好三角形中∠B与∠C的数量关系是∠B=∠C;
(2)如果有一个好三角形ABC要经过5次折叠,最后一次恰好重合.则∠B与∠C的数量关系是∠B=5∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.

(1)如图1,当BD=2时,AN=$\sqrt{10}$,NM与AB的位置关系是垂直;
(2)当4<BD<8时,
①依题意补全图2;
②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;
(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.单项式2πx2y的系数是2π.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列说法错误的是(  )
A.袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机地摸出一个球,记下颜色后放回,充分摇动后,再从中随机地摸出一个球,两次摸到不同颜色球的概率是$\frac{4}{9}$
B.甲、乙两人玩“石头、剪刀、布”的游戏,游戏规则是:如果两人的手势相同,那么第三人丙获胜,如果两人手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者.这个游戏规则对于甲、乙、丙三人是公平的
C.连续抛两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是相同的
D.一个小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在△ABC中,AD⊥BC于D,AD=BC=12,点P在AB上,且PQ∥AD交BC于点Q,PM∥BC交AC于点M,若PM=2PQ,则PM等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.一块长方形绿地的面积为1200平方米,并且长比宽多10米,如果设长为x米,根据题意可列出方程x(x+10)=1200.

查看答案和解析>>

同步练习册答案