【题目】如图,矩形ABCD的顶点 A的坐标为(4,2),顶点B,C分别在轴,轴的正半轴上.
(1)求证:∠OCB=∠ABE;
(2)求OC长的取值范围;
(3)若D的坐标为(,),请说明随的变化情况.
【答案】(1)证明见解析;(2)0<OC≤2.(3)当0<≤2时,随的增大而增大;当2≤<2时,随的增大而减小.
【解析】试题分析:(1)根据矩形的性质得出∠CBA=∠COB=90°,求出∠OCB+∠CBO=90°,∠CBO+∠ABE=90°,即可得出答案;(2)过A作AF⊥x轴于F,证△COB∽△BEA,得出比例式,设OB=x,OC=y,则BE=4﹣x,求出y=﹣x2+2x=﹣(x﹣2)2+2,即可得出答案;(3)求出n=﹣(m﹣2)2+4,根据二次函数的性质得出即可.
试题解析:
(1)证明:∵矩形ABCD,
∴∠ABC=90°,
∵∠BOC=90°,
∴∠ABC=∠BOC,
∵∠BOC+∠OCB=∠ABC+∠ABE,
∴∠OCB=∠ABE.
(2)解:过点A作AF⊥轴于F,
当点B在点F时,OC的长最小,为0.
设OB=,OC=,则BF=4-.
∵AF⊥轴,
∴∠AFB=90°.
∴∠BOC=∠AFB=90°.
∴△BOC∽△AEB.
∴.
∴.
∴.
∴OC的最大值为2.
∴OC的取值范围是0<OC≤2.
(3)解:过点D作AH⊥轴于H.
由矩形的性质易得△DHC≌△BFA.
∴DH=BF=4-,
CH=AF=2.
∴,.
∴.
∵0≤<4,
∴0<≤4.
∴当0<≤2时,随的增大而增大;当2≤<2时,随的增大而减小.
科目:初中数学 来源: 题型:
【题目】下列对于随机事件的概率的描述:
①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85
其中合理的有______(只填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是( )
A.10B.8C.6D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.
(1)求k的值;
(2)直接写出点B的坐标,并求直线AB的解析式;
(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,是圆上一点,弦于点,且.过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点.
(1)求证:与相切;
(2)连接,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点坐标为,点在边上从点运动到点,以为边作正方形,连,在点运动过程中,请探究以下问题:
(1)的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若为等腰三角形,求此时正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于两个点,和图形,如果在图形上存在点,(,可以重合),使得,那么称点与点是图形的一对“倍点”.
已知的半径为1,点.
(1)①点到的最大值,最小值;
②在,,这三个点中,与点是的一对“倍点”的是_____;
(2)在直线上存在点与点是的一对“倍点”,求的取值范围;
(3)正方形的顶点,,若正方形上的所有点与点都是的一对“倍点”,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应全民阅读的号召,某社区开展了为期一年的“读书伴我行”阅读活动,在阅读活动开展之初,随机抽取若干名社区居民,对其年阅读量(单位:本)进行了调查统计与分析,结果如下:
平均数 | 中位数 | 众数 | 最大值 | 最小值 | 方差 |
6.9 | 7.5 | 8 | 16 | 1 | 18.69 |
经过一年的“读书伴我行”阅读活动,某社区再次对这部分居民的年阅读量进行调查,并对收集的数据进行了整理、描述和分析,下面给出了部分信息.
a.居民的年阅读量统计表如下:
阅读量 | 2 | 4 | 5 | 8 | 9 | 10 | 11 | 12 | 13 | 16 | 21 |
人数 | 5 | 5 | 5 | 3 | 2 | m | 5 | 5 | 3 | 7 | n |
b.分组整理后的居民阅读量统计表、统计图如下:
组别 | 阅读量/本 | 频数 |
15 | ||
13 | ||
c.居民阅读量的平均数、中位数、众数、最大值、最小值、方差如下:
平均数 | 中位数 | 众数 | 最大值 | 最小值 | 方差 |
10.4 | 10.5 | q | 21 | 2 | 30.83 |
根据以上信息,回答下列问题:
(1)样本容量为______;
(2)_____;_____;______;
(3)根据社区开展“读书伴我行”阅读活动前、后随机抽取的部分居民阅读量的两组调查结果,请至少从两个方面对社区开展阅读活动的效果进行评价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com