如图,一次函数y1=﹣x+2的图象与反比例函数y2=
的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=
,点B的坐标为(m,n).
![]()
(1)求反比例函数的解析式;
(2)请直接写出当x<m时,y2的取值范围.
(1)反比例函数解析式为y2=-
;(2)当0<x<4时,y2的取值范围是y2<-2,当x<0时,y2>0.
【解析】
试题分析:(1)作BD⊥x轴于D,如图,在Rt△OBD中,根据正切的定义得到tan∠BOC=
,则
,即m=-2n,再把点B(m,n)代入y1=-x+2得n=-m+2,然后解关于m、n的方程组得到n=-2,m=4,即B点坐标为(4,-2),再把B(4,-2)代入y2=
可计算出k=-8,所以反比例函数解析式为y2=-
;
(2)观察函数图象得到当x<4,y2的取值范围为y2>0或y2<-2.
试题解析:(1)作BD⊥x轴于D,如图,
![]()
在Rt△OBD中,tan∠BOC=
,
∴
,即m=-2n,
把点B(m,n)代入y1=-x+2得n=-m+2,
∴n=2n+2,解得n=-2,
∴m=4,
∴B点坐标为(4,-2),
把B(4,-2)代入y2=
得k=4×(-2)=-8,
∴反比例函数解析式为y2=-![]()
(2)当0<x<4时,y2的取值范围是y2<-2,当x<0时,y2>0.
考点:反比例函数与一次函数的交点问题.
科目:初中数学 来源: 题型:
把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是( )
A.两点确定一条直线 B.垂线段最短
C.两点之间线段最短 D.三角形两边之和大于第三边
查看答案和解析>>
科目:初中数学 来源:2014-2015学年山东省九年级上学期期末调研数学试卷(解析版) 题型:解答题
(本小题满分8分)如图所示,反比例函数y1的图象经过点A(3,2),解答下列问题:
![]()
(1)求y1的函数关系式;
(2)过y1上任意一点B向x轴,y轴作垂线,交两坐标轴于C,D两点,求矩形OCBD的面积;
(3)过点A的一次函数y2与反比例函数y1的另一个交点E的横坐标为-1,求y2的关系式;
(4)通过图象回答当x取何值时,y1>y2;
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省如皋市九年级12月阶段测试数学试卷(解析版) 题型:解答题
已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:
![]()
(1)当t为何值时,四边形APFD是平行四边形?
(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省如皋市九年级12月阶段测试数学试卷(解析版) 题型:解答题
红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.
(1)请用树状图或列表法列举出各种可能选派的结果;
(2)求恰好选派一男一女两位同学参赛的概率.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省如皋市九年级12月阶段测试数学试卷(解析版) 题型:填空题
如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C= 度.
![]()
查看答案和解析>>
科目:初中数学 来源:2014-2015学年黑龙江省大庆市林甸县九年级上学期期末检测数学试卷(解析版) 题型:解答题
如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,求t的值.
![]()
查看答案和解析>>
科目:初中数学 来源:2014-2015学年福建省长汀县城区三校九年级12月联考数学试卷(解析版) 题型:填空题
如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为_______ 。(结果保留
)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com