精英家教网 > 初中数学 > 题目详情
12.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求此抛物线的解析式;
(2)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

分析 (1)已知抛物线经过C(0,-2),则可设该抛物线的解析式为y=ax2+bx-2,再把A(4,0),B(1,0)代入即可;
(2)过D作y轴的平行线交AC于E,将△DCA分割成两个三角形△CDE,△ADE,它们的底相同,为DE,高的和为4,就可以表示它们的面积和,即△DCA的面积,运用代数式的变形求最大值.

解答 解:(1)∵该抛物线过点C(0,-2),
设该抛物线的解析式为y=ax2+bx-2.
将A(4,0),B(1,0)代入,
得$\left\{\begin{array}{l}{16a+4b-2=0}\\{a+b-2=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{5}{2}}\end{array}\right.$,
∴此抛物线的解析式为y=-$\frac{1}{2}$x2+$\frac{5}{2}$x-2.

(2)如图,

设D点的横坐标为t(0<t<4),则D点的纵坐标为-$\frac{1}{2}$t2+$\frac{5}{2}$t-2.
过D作y轴的平行线交AC于E.
由题意可求得直线AC的解析式为y=$\frac{1}{2}$x-2.
∴E点的坐标为(t,$\frac{1}{2}$t-2).
∴DE=-$\frac{1}{2}$t2+$\frac{5}{2}$t-2-($\frac{1}{2}$t-2)=-$\frac{1}{2}$t2+2t.
∴S△DAC=$\frac{1}{2}$×(-$\frac{1}{2}$t2+2t)×4=-t2+4t=-(t-2)2+4.
∴当t=2时,△DAC面积最大.
∴D(2,1).

点评 本题综合考查了待定系数法求函数解析式,坐标系里表示三角形的面积及其最大值问题,掌握待定系数法的方法与步骤,会用字母代替长度,坐标,会对代数式进行合理变形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图①,AB、CD是两条射线,P为夹在这两条射线之间的一点,连PA和PC,作∠PAB和∠PCD的平分线相交于点Q.

(1)旋转射线AB,使AB∥CD,并调整点P的位置,使∠APC=180°,如图②,请直接写出∠Q的度数;
(2)当AB∥CD时,再调整点P的位置如图③,猜想并证明∠Q与∠P有何等量关系;
(3)如图④,若射线AB,CD交于一点R,其他条件不变,猜想∠P、∠Q和∠R这三个角之间满足什么样的等量关系?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,P是反比例函数的图象上的一点,过点P分别向x轴、y轴作垂线,所得到的图中的阴影部分的面积为6,则该反比例函数的表达式为y=-$\frac{6}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,…,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.(结果可用三角函数表示)
如图①,当n=3时,设AB切圆O于点C,连结OC,OA,OB,∴OC⊥AB,OA=OB,∴$∠AOC=\frac{1}{2}AOB$,AB=2BC.
在Rt△AOC中,∵$∠AOC=\frac{1}{2}•\frac{{{{360}°}}}{3}={60°}$,OC=r,∴AC=r•tan60°,AB=2r•tan60°,∴${S_{△OAB}}=\frac{1}{2}•r•2rtan{60°}={r^2}tan{60°}$,∴${S_{正三角形}}=3{S_{△OAB}}=3{r^2}•tan{60°}$.
(1)如图②,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=4r2
(2)如图③,当n=5时,仿照(1)中的方法和过程求S正五边形
(3)如图④,根据以上探索过程,请直接写出S正n边形=nr2tan$\frac{180°}{n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.2014年春节前,黑龙江省各地运用价格调节基金7892万元补贴困难群众过春节,7892万用科学记数法表示为7.892×108

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若a-b=1,ab=4,则a2+b2=9.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各式中,正确的是(  )
A.-(-1)<-(+2)B.-$\frac{5}{6}>-\frac{5}{7}$C.-(-5$\frac{1}{2}$)>|-5.5|D.-$\frac{7}{8}$$<-\frac{6}{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.某种彩票中奖的概率是1%,因此买100张该彩票一定会中奖
B.一副扑克牌中,随意抽取一张是红桃K,这是必然事件
C.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是$\frac{3}{5}$
D.抛掷两枚普通的硬币,两枚硬币均出现正面向上的概率是25%

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如果从九年级(1),(2),(3),(4),(5)班中随机抽取一个班与九年级(6)班进行一场拔河比赛,那么恰好抽到九年级(1)班的概率是$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案