【题目】某市中学生举行足球联赛,共赛了17轮(即每队均需参赛17场),记分办法是胜-场得3分。平场得1分,负一场得0分.
(1)在这次足球赛中,若小虎足球队踢平场数与踢负场数相同,共积16分,求该队胜了几场;
(2)在这次足球赛中,若小虎足球队总积分仍为16分,且踢平场数是踢负场数的整数倍,试推算小虎足球队踢负场数的情况有几种,
科目:初中数学 来源: 题型:
【题目】现有九张背面一模一样的扑克牌,正面分别为:红桃A、红桃2、红桃3、红桃4、黑桃A、黑桃2、黑桃3、黑桃4、黑桃5.
(1)现将这九张扑克牌混合均匀后背面朝上放置,若从中摸出一张,求正面写有数字3的概率是多少?
(2)现将这九张扑克牌分成红桃和黑桃两部分后背面朝上放置,并将红桃正面数字记作m,黑桃正面数字记作n,若从黑桃和红桃中各任意摸一张,求关于x的方程mx2+3x+=0有实根的概率.(用列表法或画树形图法解,A代表数字1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,直线,点为平面内一点,连接与.
(1)如图1,点在直线、之间,若,,求的度数.
(2)如图2,点在直线、之间,与的角平分线相交于点,写出与之间的数量关系,并说明理由.
(3)如图3,点在直线下方,与的角平分线相交于点,直接写出与的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J. Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若,那么叫做以为底的对数,记作:.比如指数式可以转化为,对数式可以转化为.
我们根据对数的定义可得到对数的一个性质:;理由如下:
设,,则,
∴,由对数的定义得
又∵
∴
解决以下问题:
(1)将指数转化为对数式______;
(2)证明
(3)拓展运用:计算______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点A,与y轴交于点B,与直线交于点E,点E的横坐标为3.
(1)直接写出b值:___;
(2)在y轴上有一点M,使得△ABM是等腰三角形,直接写出所有可能的点M的坐标: ;
(3)在x轴上有一点P(m,0),过点P作x轴的垂线,与直线交于点C,与直线交于点D,若CD=2OB,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天,一蔬菜经营户用90元钱从蔬菜批发市场批了西红柿和豆角共40kg到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:
品名 | 西红柿 | 豆角 |
批发价(单位:元/kg) | 2.5 | 1.5 |
零售价(单位:元/kg) | 3.5 | 2.8 |
问:(1)西红柿和豆角的重量各是多少?(列二元一次方程组求解)
(2)他当天卖完这些西红柿和豆角能赚多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F是矩形ABCD边BC上的两点,AF=DE.
(1)求证:BE=CF;
(2)若∠1=∠2=30°,AB=5,FC=2,求矩形ABCD的面积(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
A | B | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(毛利润=(售价 - 进价)×销售量)
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,BC=7cm,CD=5cm,P、Q两点分别从B、C两点同时出发,沿矩形ABCD的边以1cm/s的速度逆时针运动,点P到达点C时两点同时停止运动.当点P的运动时间为_s时,△PQC为等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com