【题目】已知抛物线y=x2,以D(﹣2,1)为直角顶点作该抛物线的内接Rt△ADB(即A.D.B均在抛物线上).直线AB必经过一定点,则该定点坐标为_____.
【答案】(2,5)
【解析】
将一次函数与二次函数组成方程组,得到关于x的一元二次方程,利用根与系数的关系建立起
系数与根的关系,又知两直线垂直,可得斜率之积为-1,列出关于x、y的方程,利用根与系数的关系将方程转化为直线的解析式,再判断其所过定点.
设A(x1,y1),B(x2,y2),直线AB的解析式为y=kx+b
由得
∴x1+x2=4k,x1x2=-4b,
y1+y2==4
y1y2=
∵AD⊥BD
kAD·kBD=-1
∴(y1-1)(y2-1)+( x1+2)(x2+2)=0
代入得
,
或b=-2k+5
代入y=kx+b
得y=kx+ 2k+1=k(x+2)+1,或y= kx-2k+5=k(x-2) +5
显然AB不过(-2,1)点
所以直线AB的解析式为y=(x-2)k+5,AB过定点(2,5)
科目:初中数学 来源: 题型:
【题目】小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折(折扣相同),其余两次均按标价购买.三次购买商品A、B的数量和费用如下表:
购买商品A的数量/个 | 购买商品B的数量/个 | 购买总费用/元 | |
第一次购物 | 6 | 5 | 1140 |
第二次购物 | 3 | 7 | 1110 |
第三次购物 | 9 | 8 | 1062 |
(1)小林以折扣价购买商品A、B是第 次购物;
(2)求出商品A、B的标价;
(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.
(1)求证:AE=BE;
(2)求证:FE是⊙O的切线;
(3)若FE=4,FC=2,求⊙O的半径及CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求m,n的值并写出反比例函数的表达式;
(2)连接AB,E是线段AB上一点,过点E作x轴的垂线,交反比例函数图象于点F,若EF=AD,求出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.
(1)如图1,若CE=CF,求证:DE=DF;
(2)如图2,在∠EDF绕点D旋转的过程中:
①探究三条线段AB,CE,CF之间的数量关系,并说明理由;
②若CE=4,CF=2,求DN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD.
(1)根据作图判断:△ABD的形状是 ;
(2)若BD=10,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:A=÷(﹣).
(1)化简A;
(2)当x2+y2=13,xy=﹣6时,求A的值;
(3)若|x﹣y|+=0,A的值是否存在,若存在,求出A的值,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数,完成下列各题:
将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴.
在直角坐标系中,画出它的图象.
根据图象说明:当取何值时,随的增大而增大?
当取何值时,?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,PO⊥AB,PE是⊙O的切线,交AB的延长线于点C,切点为E,AE交PO于点F.
(1)求证:PEF是等腰三角形;
(2)在图中,作EH⊥AB,垂足为H,作弦BD∥PC,交EH于点G.若EG=5,sinC=,求直径AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com