【题目】如图,在ABCD中,∠ABD=90°,AD= 5,BD=3,点P从点A出发,沿折线AB- BC以每秒个单位长度的速度向终点C运动(点P不与点A、B、C重合).在点P运动的过程中,过点P作AB所在直线的垂线.交边AD或边CD于点Q,以PQ为一边作矩形PQMN,且QM=2.MN与BD在PQ的同侧,设点P的运动时间为t(秒),
(1)当t= 5时,求线段CP的长;
(2)求线段PQ的长(用含t的代数式表示);
(3)当点M落在BD上时,求t的值;
(4)当矩形PQMN与ABCD重叠部分圆形为五边形时,直接写出t的取值范围.
【答案】(1)4;(2)当时,;当时,;(3)2或;(4),
【解析】
(1)如图1中,利用勾股定理求出AB的长,t=5时,点P在线段BC上,易知PB=1,PC=4;
(2)分两种情形求解即可①如图2中,当0<t<4时,②如图3中,当5<t<10时;
(3)分两种情形求解即可①如图4中,当点P在线段AB上时,点M在线段BD上,求出AP.②如图5中,当点P在线段BC上,点M与D重合时;
(4)分两种情形分别求解即可①如图6中,当点P在线段AB上,重叠部分是五边形PBKMQ时,2<t<4.②如图7中,当点P在线段BC上,重叠部分是五边形PQDKN时,4<t<6.5;
(1)如图1中,
在Rt△ABD中,∵∠ABD=90,AD=5,BD=3,
∴AB==4,
∵四边形ABCD是平行四边形,
∴AD=BC=5,CD=AB=4,
当t=5时,点P在BC上,PB=1,
∴PC=4.
(2)①如图2中,当0<t<4时,
∵PQ∥BD,
∴,
∴,
∴PQ=t.
②如图3中,当5<t<10时,
∵PQ∥BD,
∴,
∴,
∴PQ=(9t).
∴当时,;当时,;
(3)①如图4中,当点P在线段AB上时,点M在线段BD上,
∵QM∥AB,
∴,
∴,
∴DQ=,
∴AQ=DQ,
∵PQ∥BD,
∴AP=PB=2,
∴t=2.
②如图5中,当点P在线段BC上,点M与D重合时,
∵QM=2,∴CQ=CD- QM=2,
∴Q点是CD中点,
故PQ是△BCD是中位线
故PB=PC=BC=,
此时t=4+=.
∴当点M落在BD上时,求t的值为2或;
(4)①如图6中,重叠部分是五边形PBKMQ
由图4可知,当P点为AB中点时,t=2
当P点与B点重合时,t=4
故当点P在线段AB上,重叠部分是五边形PBKMQ时,2<t<4;
②如图7中,重叠部分是五边形PQDKN,
由图5可知,当P点为BC中点时,t=,
当P点与B点重合时,t=4,
当点P在线段BC上,重叠部分是五边形PQDKN时,4<t<6.5.
∴当矩形POMN与ABCD重叠部分圆形为五边形时, t的取值范围是2<t<4或4<t<6.5.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=a(x﹣)(x+3)交x轴于点A、B,交y轴于点C,tan∠CAO=.
(1)求a值;
(2)点P为第一象限内抛物线上一点,点P的横坐标为t,连接PA,PC,设△PAC的面积为S,求S与t之间的关系式;
(3)在(2)的条件下,点Q在第一象限内的抛物线上(点Q在点P的上方),过点P作PE⊥AB,垂足为E,点D在线段AQ上,点F在线段AO上连接ED、DF,DE交AP于点G,若∠QDF+∠QDE=180°,∠DFA+∠AED=90°,PG=PE,PG:EF=3:2,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.求教学楼CG的高.(参考数据:1.4,1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】江苏卫视《最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在本期比赛中有A、B、C三组家庭进行比赛.
(1)若机器人智能小度选择A组家庭的宝宝,求小度在妈妈区域中正确找出其妈妈的概率;
(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求机器人智能小度至少正确找对宝宝父母其中一人的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校根据学校实际,决定开设:篮球、:乒乓球、:声乐、:健美操四种活动项目(必选且只能选一个),为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果整理后会制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:
(1)求这次被调查的学生共有多少人;
(2)通过计算补全条形统计图;
(3)已知该校有学生1600人,请根据调查结果估计该校最喜欢乒乓球的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某初中学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调査的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题
(1)参加调査的学生共有 人,在扇形图中,表示“其他球类”的扇形圆心角为 度;
(2)将条形图补充完整;
(3)若该校有2300名学生,则估计喜欢“足球”的学生共有 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某新建成学校举行美化绿化校园活动,九年级计划购买,两种花木共100棵绿化操场,其中花木每棵50元,花木每棵100元.
(1)若购进,两种花木刚好用去8000元,则购买了两种花木各多少棵?
(2)如果购买花木的数量不少于花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边的顶点,,规定把“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,等边的顶点的坐标为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com