精英家教网 > 初中数学 > 题目详情

【题目】计算:(1)-3+5;

(2)-3-2;

(3)

(4)

(5)

(6).

【答案】(1)2;(2)-5;(3)-3;(4);(5)-142;(6)15x2-32x-1.

【解析】

(1)根据有理数的加法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的乘法法则计算即可;(4)根据有理数的除法法则计算即可; (5)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(6)先根据去括号法则去掉括号,再合并同类项法则合并同类项即可.

(1)-3+5=2,

(2)-3-2=-5,

(3)=-3,

(4) =

(5)=-25+2×(-27) -63= -25-54-63=-142,

(6)=3x+4x-1+12x-36x=15x-32x-1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】去年4月,我市开展了“北海历史文化进课堂”的活动,北海某校政教处就同学们对北海历史文化的了解程度进行随机抽样调查,并绘制成了如下两幅不完整的统计图.
根据统计图中的信息,解答下列问题:
(1)本次调查的样本容量是多少,调查中“了解很少”的学生占多少;
(2)补全条形统计图;
(3)若全校共有学生900人,那么该校约有多少名学生“很了解”北海的历史文化?
(4)通过以上数据的分析,请你从爱家乡、爱北海的角度提出自己的观点和建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A2019表示的数,是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,小丽用尺规这样作图:(1),以点O为圆心,任意长为半径作弧,交OA,OB于D,E两点;(2)分别以点D,E为圆心,大于 DE的长为半径作弧,两弧交于点C;第三部,作射线OC并连接CD,CE,下列结论不正确的是(
A.∠1=∠2
B.SOCE=SOCD
C.OD=CD
D.OC垂直平分DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有甲、乙两个瓷器店出售茶壶和茶杯,茶壶每只价格为20元,茶杯每只价格为5元,已知甲店制定的优惠方法是买一只茶壶送一只茶杯,乙店按总价的92%付款.学校办公室需要购买茶壶4只,茶杯若干只(不少于4只).

(1)当购买多少只茶杯时,两店的优惠方法付款一样多?

(2)当需要购买40只茶杯时,若让你去办这件事,你打算去哪家商店购买?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

数学活动课上,老师出了一道作图问题:如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”

小艾的作法如下:

(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.

(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.

(3)两弧分别交于点P和点M

(4)连接PM,与直线l交于点Q,直线PQ即为所求.

老师表扬了小艾的作法是对的.

请回答:小艾这样作图的依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了如图,作一个,以O为圆心任意长为半径画弧分别交OAOB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接小鹏通过观察和推理,得出结论:OP平分

你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明.

已知:中,____________________________________

求证:OP平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面的例题:

例题:已知二次三项式x2-4x+m有一个因式是x+3,求另一个因式以及m的值.

解:设另一个因式为x+n,

x2-4x+m=(x+3)(x+n),

∴x2-4x+m=x2+(n+3)x+3n,

解得

∴另一个因式为x-7,m的值为-21.

问题:仿照以上方法解答下面的问题:

已知二次三项式2x2+3x-k有一个因式是2x-5,求另一个因式以及k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCAB=ACCE平分ACBAB于点ECE=BC.

(1)A的度数;

(2)能否在AC边上找一点D并连接ED使AED≌△CEB?若能请作出你找的点并证明;若不能请说明理由.

查看答案和解析>>

同步练习册答案