【题目】如图,在△ABC 中,∠ACB 为钝角,边 AC 绕点 A 沿逆时针方向旋转 90°得到AD,边 BC 绕点 B 沿顺时针方向旋转 90°得到 BE,作 DM⊥AB 于点 M,EN⊥AB于 点 N, 若 AB=10,EN=4, 则 DM=__________.
【答案】6
【解析】
过点C作CF⊥AB于点F,由旋转的性质可得AD=AC,BE=BC,利用“一线三等角”证得∠D=∠CAF,从而可判定△DAM≌△ACF(AAS),则DM=AF.同理可证,△BFC≌△ENB(AAS),则BF=EN=4,再由AB=10,可得AF,即DM的值.
过点C作CF⊥AB于点F,如图所示:
则旋转的性质得:
∴AD=AC,BE=BC,
∵DM⊥AB于点M,EN⊥AB于点N,CF⊥AB于点F,
∴∠AMD=∠AFC=∠BFC=∠BNE=90°,
∴∠D+∠DAM=90°,
∵∠CAD=90°,
∴∠CAF+∠DAM=90°,
∴∠D=∠CAF,
∴在△DAM和△ACF中,
,
∴△DAM≌△ACF(AAS),
∴DM=AF,
同理可证,△BFC≌△ENB(AAS),
∴BF=EN=4,
∵AB=10,
∴AF=6,
∴DM=6.
故答案为:6.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是( )
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点B的坐标为,将直线沿y轴向上平移3个单位长度后,恰好经过B、C两点.
(1)求k的值和点C的坐标;
(2)求抛物线的表达式及顶点D的坐标;
(3)已知点E是点D关于原点的对称点,若抛物线与线段恰有一个公共点,结合函数的图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线顶点C(1,4),且与y轴交于点D(0,3).
(1)求该抛物线的解析式及其与x轴的交点A、B的坐标;
(2)将直线AC绕点A顺时针旋转45°后得到直线AE,与抛物线的另一个交点为E,请求出点E的坐标;
(3)如图2,点P是该抛物线上位于第一象限的点,线段AP交BD于点M、交y轴于点N,△BMP和△DMN的面积分别为S1,S2,求S1﹣S2的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径, BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB =2∠EAB.
(1)求证:AC是⊙O的切线;
(2)若,,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.
(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.
(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A,B,C三点的位置如图,请在网格图中标出所有的格点D,使得以A,B,C,D为顶点的四边形为邻和四边形.
(3)如图3,△ABC中,∠ABC=90°,AB=4,BC=4,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在平面直角坐标系中,点,点,点从点出发,沿以1个单位每秒的速度匀速运动,同时点从点出发,沿轴正方向以2个单位每秒的速度匀速运动.,交于点,交轴于点.当点到达点时,两点同时停止运动,设运动的时间为秒.在整个运动过程中,设与的重叠部分的面积为.
(1)求当为何值时,点与点、在同一直线上;
(2)求关于的函数关系式;
(3)在图(3)中画出关于的函数图象,直接写出的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com