精英家教网 > 初中数学 > 题目详情
已知,如图,在平面直角坐标系中,A、B两点坐标分别为A(4,0),B(0,8),直线y=2与直线AB交于点C,与y轴交于点D;
(1)求直线AB的解析式;
(2)点E是直线AB上的一个动点,问:在y轴上是否存在点F,使得△DEF为等腰直角三角形?若存在,请求出点E及对应的点F的坐标;若不存在,请说明理由.
分析:(1)因为直线AB与x轴,y轴分别交于A(4,0),B(0,8)两点,所以可设y=kx+b,将A、B的坐标代入,利用方程组即可求出答案;
(2)分①当∠EDF=90°时,点E与点C重合;②当∠DFE=90°时,FD=FE;③当∠DEF=90°时,ED=EF;三种情况讨论可得使得△DEF为等腰直角三角形时,点E及对应的点F的坐标.
解答:解:(1)设直线AB解析式为:y=kx+b,
把A,B的坐标代入得
4k+b=0
b=8

解得k=-2,b=8.
所以直线AB的解析为:y=-2x+8;

(2)①当∠EDF=90°时,点E与点C重合,E1(3,2),
FD=CD=3,
∴F1(0,5)或F2(0,-1),
②当∠DFE=90°时,FD=FE,
令F(0,m),则E(
8-m
2
,m)

FD=|2-m|,FE=|
8-m
2
|

∵FD=FE
∴|2-m|=|
8-m
2
|

解得m=4或m=-4
∴E2(2,4),F3(0,4);
E3(6,-4),F4(0,-4).
③当∠DEF=90°时,ED=EF,
由②可得E2(2,4)时,F5(0,6),
E3(6,-4)时,F6(0,-10),
综上,当E1(3,2),F1(0,5)或F2(0,-1);
E2(2,4),F3(0,4),F5(0,6);
E3(6,-4),F4(0,-4),F6(0,-10)时,△DEF为等腰直角三角形.
点评:本题综合考查了用待定系数法求一次函数的解析式和等腰直角三角形的有关知识,解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题

已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.

(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案