精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒

(1)求线段EF的长(用含t的代数式表示);

(2)求点H与点D重合时t的值;

(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;

(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为 ;当OO′⊥AD时,t的值为

【答案】(1)EF=t;(2)t=;(3);(4)t=4;t=3.

【解析】

试题分析:(1)由题意知:AE=2t,由锐角三角函数即可得出EF=t;

(2)当H与D重合时,FH=GH=8﹣t,由菱形的性质和EG∥AD可知,AE=EG,解得t=

(3)矩形EFHG与菱形ABCD重叠部分图形需要分以下两种情况讨论:①当H在线段AD上,此时重合的部分为矩形EFHG;②当H在线段AD的延长线上时,重合的部分为五边形;

(4)当OO′∥AD时,此时点E与B重合;当OO′⊥AD时,过点O作OM⊥AD于点M,EF与OA相交于点N,然后分别求出O′M、O′F、FM,利用勾股定理列出方程即可求得t的值.

试题解析:(1)由题意知:AE=2t,0≤t≤4,∵∠BAD=60°,∠AFE=90°,∴sin∠BAD=,∴EF=t;

(2)∵AE=2t,∠AEF=30°,∴AF=t,当H与D重合时,此时FH=8﹣t,∴GE=8﹣t,∵EG∥AD,∴∠EGA=30°,∵四边形ABCD是菱形,∴∠BAC=30°,∴∠BAC=∠EGA=30°,∴AE=EG,∴2t=8﹣t,∴t=

(3)当0≤t≤时,此时矩形EFHG与菱形ABCD重叠部分图形为矩形EFHG,∴由(2)可知:AE=EG=2t,∴S=EFEG=t2t=

<t≤4时,如图1,设CD与HG交于点I,此时矩形EFHG与菱形ABCD重叠部分图形为五边形FEGID,∵AE=2t,∴AF=t,EF=t,∴DF=8﹣t,∵AE=EG=FH=2t,∴DH=2t﹣(8﹣t)=3t﹣8,∵∠HDI=∠BAD=60°,∴tan∠HDI=,∴HI=DH,∴S=EFEG﹣DHHI==

综上所述:

(4)当OO′∥AD时,如图2此时点E与B重合,∴t=4;

当OO′⊥AD时,如图3,过点O作OM⊥AD于点M,EF与OA相交于点N,由(2)可知:AF=t,AE=EG=2t,∴FN=t,FM=t,∵O′O⊥AD,O′是FG的中点,∴O′O是△FNG的中位线,∴O′O=FN=t,∵AB=8,∴由勾股定理可求得:OA=OM=,∴O′M=,∵FE=t,EG=2t,∴由勾股定理可求得:,∴由矩形的性质可知:,∵由勾股定理可知:,∴,∴t=3或t=﹣6(舍去).

故答案为:t=4;t=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:

请根据以图表信息,解答下列问题:

(1)表中m=  ,n=  

(2)补全频数分布直方图;

(3)全体参赛选手成绩的中位数落在第几组;

(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】写一个二次项系数为1的一元二次方程,使得两根分别是-2和1. _______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).

(1)A1B1C1是△ABC绕点__逆时针旋转__度得到的,B1的坐标是__

(2)求出线段AC旋转过程中所扫过的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数x满足(x2-x)2-4(x2-x)-5=0,则x2-x的值是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三个连续的正奇数,最大数与最小数的积比中间一个数的6倍多3,求这三个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鸡兔同笼,数头有8只,数脚有26只,笼中有________只鸡,________只兔.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知命题关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解,能说明这个命题是假命题的一个反例可以是(

A. b=﹣1 B. b=2 C. b=﹣2 D. b=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法不正确的是( )

A. 四边都相等的四边形是平行四边形

B. 两组对角分别相等的四边形是平行四边形

C. 对角线互相垂直的四边形是平行四边形

D. 两组对边分别平行的四边形是平行四边形

查看答案和解析>>

同步练习册答案